久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    欧美性受xxxx黒人xyx性爽| 欧美视频第一区| 成人黄色av片| 中文字幕一区二区在线观看视频 | 免费人成自慰网站| av电影一区二区三区| mm131亚洲精品| 中文字幕第80页| 日韩欧美亚洲天堂| 成年人网站国产| 国产成a人亚洲精v品在线观看| 日本特级黄色大片| 亚洲色图欧美自拍| 想看黄色一级片| 午夜av中文字幕| 91欧美一区二区三区| www.午夜av| 日本一二三四区视频| 亚洲精品乱码久久久久久动漫| 亚洲色图38p| 激情内射人妻1区2区3区 | 鲁一鲁一鲁一鲁一澡| 婷婷五月综合缴情在线视频| 男女私大尺度视频| 国产精品国产亚洲精品看不卡| 男女日批视频在线观看| 国产精品999视频| 国产高清精品在线观看| 亚洲熟妇av一区二区三区| 成人免费视频久久| 污视频网站观看| 视频区 图片区 小说区| 成人在线观看www| 激情五月六月婷婷| 国产日韩欧美精品在线观看| jizzjizz国产精品喷水| 激情综合网婷婷| 婷婷免费在线观看| 一级黄色录像免费看| 免费人成自慰网站| 亚洲国产精品久久久久婷蜜芽| 国产精品涩涩涩视频网站| 欧美特黄aaa| 免费日韩在线观看| 日韩欧美亚洲天堂| 国产成人黄色网址| 一二三在线视频| 啊啊啊一区二区| 手机av在线免费| 男人天堂av片| 激情综合网俺也去| 波多野结衣激情| 欧美色图色综合| 日本不卡一区二区在线观看| 免费成人深夜夜行网站视频| 拔插拔插海外华人免费| 五月天婷婷激情视频| 乱子伦一区二区| 国产一区亚洲二区三区| 亚洲欧美日韩一二三区| 成人性生活视频免费看| 9l视频白拍9色9l视频| 日b视频免费观看| 色多多视频在线播放| 日本精品福利视频| 亚洲成色www.777999| 超薄肉色丝袜足j调教99| 麻豆av免费在线| www.-级毛片线天内射视视| 能在线观看的av| 午夜久久久久久久久久久| avav在线看| 中文字幕色呦呦| 色综合色综合色综合色综合| www插插插无码视频网站| 日韩欧美国产片| 久久久久久久久久伊人| 天天爱天天操天天干| 天堂8在线天堂资源bt| 日本中文字幕精品—区二区| 蜜臀av色欲a片无码精品一区| 日本美女视频一区| 国产精品后入内射日本在线观看| 老汉色影院首页| 岛国av在线免费| 国产精品亚洲a| av网站手机在线观看| 成人不卡免费视频| 日韩中文字幕二区| 日韩一级性生活片| 一本二本三本亚洲码| 欧美三级理论片| 116极品美女午夜一级| 91视频 - 88av| 一级网站在线观看| 天天操天天爽天天射| 日本www在线播放| 日韩精品视频在线观看视频| 欧美精品一区二区性色a+v| 午夜在线观看av| 成人精品视频一区二区| 日韩中文字幕在线免费| 天堂av在线中文| 中文字幕在线视频一区二区| 一区二区三区视频网| 久久久精品在线视频| 激情深爱综合网| 免费拍拍拍网站| www.好吊操| 美女av免费观看| 日韩中文在线字幕| 欧美aaa在线观看| 天天做天天干天天操| 中文字幕第38页| 一道本视频在线观看| 国产偷人视频免费| 日韩人妻精品无码一区二区三区| 六月婷婷在线视频| 亚洲人成无码网站久久99热国产 | 缅甸午夜性猛交xxxx| 国产精品免费看久久久无码| 只有这里有精品| 大桥未久一区二区三区| 黄色高清视频网站| 特黄特黄一级片| 欧美视频亚洲图片| 亚洲一区二区福利视频| 性生生活大片免费看视频| 一女二男3p波多野结衣| 色播五月综合网| 狠狠干狠狠操视频| 亚洲一区二区偷拍| 久久久久亚洲av无码专区喷水| 欧美精品久久96人妻无码| 日本三日本三级少妇三级66| 中国女人做爰视频| 日韩精品免费一区| 青青青青草视频| 欧美性久久久久| 天天色综合社区| 成人高清在线观看视频| 黄色片免费在线观看视频| 日韩欧美不卡在线| 亚洲熟妇无码另类久久久| 无码人妻h动漫| 美女喷白浆视频| 超碰在线免费av| www.日本在线视频| www.玖玖玖| 国产三级国产精品国产专区50| 久久国产精品国产精品| 天堂在线精品视频| 国产夫妻自拍一区| 日本xxxxxxx免费视频| 热久久久久久久久| 日韩精品免费一区| 日本一区二区黄色| 一本色道久久亚洲综合精品蜜桃| 亚洲精品在线网址| 99热亚洲精品| 欧美精品性生活| 日本一区二区三区四区五区六区| 欧美亚洲黄色片| 国产野外作爱视频播放| 日本a级片在线观看| 香港三级韩国三级日本三级| 香港日本韩国三级网站| 天堂а√在线中文在线| 成人观看免费完整观看| 久久久国产精华液999999| 日韩专区第三页| 欧美一级片中文字幕| 欧美少妇一级片| 1024精品视频| 日本网站在线看| www.玖玖玖| 熟妇熟女乱妇乱女网站| 久久无码高潮喷水| 99亚洲精品视频| 免费男同深夜夜行网站| 国产免费xxx| 爱情岛论坛亚洲首页入口章节| 波多野结衣 作品| 久草福利视频在线| 久久男人资源站| gai在线观看免费高清| 波多野结衣综合网| 奇米777在线| 国产精品亚洲αv天堂无码| 最新av在线免费观看| av天堂永久资源网| 在线观看17c| 国产探花在线看| 国产精品少妇在线视频| 国产在线xxxx| 91在线第一页| 另类小说第一页| 免费无码av片在线观看| 国产va亚洲va在线va| 国产卡一卡二在线|