代寫 661985 – Safety Critical System編程代做

時間:2024-07-18  來源:  作者: 我要糾錯



Portfolio for Safety-Directed Design of a Brake-By-Wire System for Car 
Coursework for 661985 – Safety Critical Systems 
Part 2 –Dynamic Reliability Analysis and System Adaptation for Electronic Stability 
 
The Portfolio explores the iterative design of a Brake-By-Wire (BBW) system for cars. 
This is Part 2 of the assignment and continues this exploration with dynamic reliability analysis, 
considering adaptation of the system to prevent skidding for electronic stability purposes. Part2 is worth 
60% of the Portfolio. 
You will analyse this architecture using Markov Models. Calculation of reliability involves programming 
exercises. 
We continue to examine the systems presented in Part 1. Its architecture for the system is given in Figure 1 
below: 
 Figure 1: The proposed architecture of the BBW system 
System Specification 
• The BBW features separate braking on each wheel. 
• All components of the system are powered by a common power supply (PS). 
• An electromechanical pedal (PL) receives the braking demand from the driver and sends this as a 
message (PLm) to two pedal nodes PN1, and PN2. 
• Two replicas of the message are sent by each pedal node to buses B1 and B2. PN1 sends PN1m, 
while PN2 sends PN2m. 
• Four Wheel nodes (WN1 … WN4) each read those four identical messages (PN1B1m, PN2B1m, 
PN1B2m, PN2B2m) from the two buses. 
• As long as one of the messages is received a wheel node can create the braking output applied to 
the corresponding wheel (WN1b ... WN4b). 
PN1 
PN2 
  PS 
PLm 
B1 B2 
PN1m 
PN2m 
PN1B1m, PN2B1m 
PN1B2m, PN2B2m 
WN1b 
WN2b 
WN3b 
WN4b 

p p 
p p 

PL 
PN1B1m, PN2B1m 
PN1B1m, PN2B1m 
PN1B1m, PN2B1m 
PN1B2m, PN2B2m 
PN1B2m, PN2B2m 
PN1B2m, PN2B2m  2 
Failures 
Each component in this system has only one failure mode that shares the name of the component. For 
example: 
• The failure mode of component PS is PS 
• The failure mode of component B1 is B1 
The failure mode of each component leads to the omission of all outputs. For example: 
• If PS fails, you get O-p (Omission of p) 
• If B1 fails, you get O-PN1B1m and O-PN2B1m 
• Regarding the dynamic reliability analysis: 
o It is assumed that all components have two states Operational and Failure. 
o It is assumed that the system is completely healthy at the starting point. 
o The failure distribution of all components is exponential with constant failure rates. 
In the absence of component failures, all four wheels apply the braking output and the car brakes correctly. 
When components fail, the system may fail to brake on one or more wheels. The effects vary depending on 
the number of wheel failures. For example: 
• If one wheel fails, the car brakes sufficiently but is likely to skid off its course. 
In this case, to correct the skidding failure, an electronic stability program could release the wheel 
that is diagonal to the wheel that fails to brake. The car then brakes slowly, and the stopping 
distance is increased. 
• If all wheels fail, then the car experiences catastrophic loss of braking. 
Assignment Tasks 
Based on this design: 
1. Only consider the independent failure modes of the 4 Wheels in the BBW and assume that the rest 
of the system is perfect. Each wheel failure will lead the BBW to hazardous states of asymmetrical 
braking. In each of the 4 cases, skidding prevention is applied by locking the diagonal wheel leading 
to moving the system to a corresponding recovery state with reduced braking capacity. We assume 
that the skidding prevention mechanism is perfect, i.e. the probability of its failure is zero. We also 
assume that any further wheel failure from asymmetrical braking or recovery states will lead the 
BBW to a single terminally failed state. Draw a Markov model and explain the model construction 
procedure (15 marks). 
2. Consider that in [1]. all wheels have the same failure rates of 0.0001 failure per hour and provide a 
Python code to calculate and visualise the reliability curve for 2000 hours (15 marks). 
3. Only consider the failure modes of PL, PN1, PN2, B1, B2, and PS, assuming that the wheels are 
perfect. Draw a Markov model which shows how the system moves into a state of complete loss of 
braking and explain the model construction procedure. (15 marks). 
4. Consider that in [3], all failure modes have the same failure rate of 0.000623 failure/hours. Provide 
a Python code to calculate and visualise the reliability curve for 2000 hours. (20 marks). 
5. Consider only failure modes of B1 and B2 and Assume all other components are perfect. Also, 
assume they are repairable with a failure rate of 0.0002 and a repair rate of 0.01 repair per hour. 
Construct a new Markov model to evaluate the Availability and MTBF of the Bus subsystem. Please 
provide a Python code for steady-state availability and MTBF calculation. The intention is to only 
evaluate the availability and MTBF of the Bus sub-system. (20 marks) 
6. Consider only the failure modes of PN1 and PN2 and assume all other components are perfect. Only 
focus on the reliability of pedal nodes and explain how we can improve the reliability using 
reconfigurable Triple Modular Redundancy (TMR) architecture supported with three hot standby  3 
redundancies. For all components, please consider the fixed failure rate of 0.000432. Construct a 
new Markov model to evaluate the reliability of the Pedal Node subsystem. Please provide a Python 
code for reliability calculation and visualise the unreliability curve for 3000 hours (15 marks). 
Notes: 
• Explain your solutions in [1-6] above with a short paragraph of text to show your understanding. 
Avoid verbosity. Up to 30% of marks will be deducted for lack of explanation. 
• For computational problems [2, 4, 5 and 6], please submit your Python code in separate files. These 
files should be named according to the question number (e.g., Question2.py, Question4.py, etc.). 
Please ZIP the files with the final report and submit it as a single-file submission. 
• Ensure your code is runnable. If your code cannot be executed due to errors, it will be examined 
manually, and marks will be awarded based on the effort and correctness of the approach. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp








 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:FINS5542代做、代寫Java/c++設計程序
  • 下一篇:DDES9903代寫、代做Python,c/c++編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區(qū)
    昆明西山國家級風景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    无码人妻丰满熟妇区免费| 中文字幕在线无码一区| 欧美日韩久久中文字幕 | 夜夜添无码一区二区三区| 中文字幕有码无码AV| 人妻丰满熟妇AV无码片| 亚洲国产中文v高清在线观看 | 国产成人亚洲综合无码精品| 无码人妻少妇久久中文字幕| 亚洲午夜无码久久久久小说| 无码精品A∨在线观看中文| 日韩欧美一区二区三区中文精品| 久久av高潮av无码av喷吹| 午夜人性色福利无码视频在线观看| 精品久久久无码中文字幕天天| 亚洲AV无码一区二区大桥未久| 国产V亚洲V天堂无码| 无码区国产区在线播放| 中文字幕人妻无码一夲道| 亚洲国产精品狼友中文久久久| 欧美精品中文字幕亚洲专区| 波多野结衣AV无码| 久久久久久亚洲Av无码精品专口| 夜夜添无码一区二区三区| 国产成人无码区免费网站| 无码毛片AAA在线| 区三区激情福利综合中文字幕在线一区| 无码中文人妻视频2019| 熟妇人妻中文av无码| 亚洲最大激情中文字幕| 亚洲.欧美.中文字幕在线观看| 国产亚洲中文日本不卡二区| 无码人妻精品一区二区三区99不卡 | 亚洲精品无码MV在线观看| 国产aⅴ激情无码久久| 精品无码久久久久国产动漫3d| 亚洲日韩中文在线精品第一| 久久人妻无码中文字幕| 亚洲日韩乱码中文无码蜜桃臀网站| 精品亚洲成在人线AV无码| 午夜福利无码不卡在线观看|