代寫MTH5510、代做Matlab程序語言

時間:2024-08-13  來源:  作者: 我要糾錯



MTH5510: QRM - Exercises Set 2
Due date: August 12, 2024;12:00pm;
Analysis the output of the Matlab code is mandatory. I am not interested just to the Matlab code.
Hand in stapled hardcopy at the beginning of the tutorial session
Note: You might want to use Matlab for this exercise; adequately report and comment on your
results (For a quick introduction to Matlab visit http://www.mathworks.com/access/helpdesk/
help/pdf_doc/matlab/getstart.pdf)
Exercise I: This question deals with a portfolio of five stocks. At time t, the values of the stocks
are S1,t = 100, S2,t = 50, S3,t = 25, S4,t = 75, and S5,t = 150. The portfolio consists of 1 share
of S1, 3 shares of S2, 5 shares of S3, 2 shares of S4, and 4 shares of S5. These risk factors are
logarithmic prices and the factor changes have mean zero and standard deviations 10?3, 2 · 10?3,
3 · 10?3, 1.5 · 10?3, and 2.5 · 10?3, respectively. The risk factors are independent.
1. Compute VaRα, VaR
mean
α , and ESα using Monte Carlo with 10,000 simulations. Do this for
α = {0.90, 0.91, . . . , 0.99}. Also use the following distributions for the risk factor changes:
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(3, μ, σ) for appropriate values of μ and σ
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(10, μ, σ) for appropriate values of μ and σ
For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(50, μ, σ) for appropriate values of μ and σ
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ N (μ, σ2)
Plot the results.
2. Comment on the following:
 The value of VaRα compared to VaRmeanα
 The value of VaRα and ESα as compared between the four distributions. Are the results
what you expected?
Exercise II: This question deals with delta hedged call option. The following are the Black-
Scholes parameters for a European call option at time t = 0:
T = 0.5
rt = 0.05
σt = 0.2
St = 100
K = 100.
1
The portfolio consists of long position on the call option, and the corresponding position in the
stock which makes the portfolio delta neutral. Let ? = 1day, Z1 = log(S), and Z2 = σ (r
will be considered in this problem). The risk factor changes are normally distributed with mean
zero. Their standard deviations over one day are 10?3 and 10?4 and their correlation is ?0.5.
(a) Compute V aRα, V aR
mean
α , and ESα for α = 0.95 and α = 0.99 using the following
methods:
 Monte Carlo full revaluation with 10,000 simulations
 Monte Carlo on the linearized loss with 10,000 simulations
 Variance-covariance method
Do not neglect the time derivative in any linearizion in this question.
Exercise III: Let L have the Student t distribution with ν degree of freedom. Derive the
formula
ESα(L) =
(
gν(t
?1
ν (α))
1? α
)(
ν + (t?1ν (α))2
ν ? 1
)



請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:代寫COMP4337、代做Python編程設(shè)計
  • 下一篇:代寫GA.2250、Python/Java程序語言代做
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 幣安app官網(wǎng)下載 幣安app官網(wǎng)下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2023 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    国产激情无码一区二区app| 亚洲中文字幕无码日韩| 无码夫の前で人妻を犯す中字| 亚洲国产精品无码专区| 亚洲综合最新无码专区| 少妇性饥渴无码A区免费| 97无码免费人妻超级碰碰夜夜| 日韩电影免费在线观看中文字幕 | 精品深夜AV无码一区二区| 中文字幕无码播放免费| 亚洲人成影院在线无码按摩店| 精品久久久久久中文字幕大豆网 | 亚洲中文字幕无码日韩| 中文字幕无码精品三级在线电影| 无码日韩人妻AV一区二区三区 | 国产成人精品无码片区在线观看| 中文字幕一区二区三区精彩视频| AV无码免费永久在线观看| 在线观看中文字幕码| 中文在线中文A| 成在线人免费无码高潮喷水| 国内精品人妻无码久久久影院导航| 亚洲精品无码激情AV| 久久综合精品国产二区无码| 炫硕日本一区二区三区综合区在线中文字幕 | 无码国产精品一区二区免费式直播| 人妻无码久久精品| 欧洲无码一区二区三区在线观看 | 久久伊人亚洲AV无码网站| 亚洲国产精品无码久久| 欧美日韩中文国产va另类电影| 无码精品第一页| yy111111少妇无码影院| 曰批全过程免费视频在线观看无码| 最近更新中文字幕在线| 欧美日韩亚洲中文字幕一区二区三区 | 亚洲2022国产成人精品无码区 | 18无码粉嫩小泬无套在线观看| 亚洲精品无码午夜福利中文字幕 | 中文字幕一区二区三区精彩视频| 亚洲精品无码AV中文字幕电影网站|