代寫MTH5510、代做Matlab程序語言

時間:2024-08-13  來源:  作者: 我要糾錯



MTH5510: QRM - Exercises Set 2
Due date: August 12, 2024;12:00pm;
Analysis the output of the Matlab code is mandatory. I am not interested just to the Matlab code.
Hand in stapled hardcopy at the beginning of the tutorial session
Note: You might want to use Matlab for this exercise; adequately report and comment on your
results (For a quick introduction to Matlab visit http://www.mathworks.com/access/helpdesk/
help/pdf_doc/matlab/getstart.pdf)
Exercise I: This question deals with a portfolio of five stocks. At time t, the values of the stocks
are S1,t = 100, S2,t = 50, S3,t = 25, S4,t = 75, and S5,t = 150. The portfolio consists of 1 share
of S1, 3 shares of S2, 5 shares of S3, 2 shares of S4, and 4 shares of S5. These risk factors are
logarithmic prices and the factor changes have mean zero and standard deviations 10?3, 2 · 10?3,
3 · 10?3, 1.5 · 10?3, and 2.5 · 10?3, respectively. The risk factors are independent.
1. Compute VaRα, VaR
mean
α , and ESα using Monte Carlo with 10,000 simulations. Do this for
α = {0.90, 0.91, . . . , 0.99}. Also use the following distributions for the risk factor changes:
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(3, μ, σ) for appropriate values of μ and σ
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(10, μ, σ) for appropriate values of μ and σ
For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(50, μ, σ) for appropriate values of μ and σ
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ N (μ, σ2)
Plot the results.
2. Comment on the following:
 The value of VaRα compared to VaRmeanα
 The value of VaRα and ESα as compared between the four distributions. Are the results
what you expected?
Exercise II: This question deals with delta hedged call option. The following are the Black-
Scholes parameters for a European call option at time t = 0:
T = 0.5
rt = 0.05
σt = 0.2
St = 100
K = 100.
1
The portfolio consists of long position on the call option, and the corresponding position in the
stock which makes the portfolio delta neutral. Let ? = 1day, Z1 = log(S), and Z2 = σ (r
will be considered in this problem). The risk factor changes are normally distributed with mean
zero. Their standard deviations over one day are 10?3 and 10?4 and their correlation is ?0.5.
(a) Compute V aRα, V aR
mean
α , and ESα for α = 0.95 and α = 0.99 using the following
methods:
 Monte Carlo full revaluation with 10,000 simulations
 Monte Carlo on the linearized loss with 10,000 simulations
 Variance-covariance method
Do not neglect the time derivative in any linearizion in this question.
Exercise III: Let L have the Student t distribution with ν degree of freedom. Derive the
formula
ESα(L) =
(
gν(t
?1
ν (α))
1? α
)(
ν + (t?1ν (α))2
ν ? 1
)



請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP4337、代做Python編程設計
  • 下一篇:代寫GA.2250、Python/Java程序語言代做
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 福建中專招生網 NBA直播 短信驗證碼平臺 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    无码精品蜜桃一区二区三区WW| 麻豆AV无码精品一区二区 | 无码AV大香线蕉| 亚洲午夜国产精品无码老牛影视| 最近中文字幕在线中文视频| 2014AV天堂无码一区| 日本三级在线中文字幕在线|中文| 国产做无码视频在线观看浪潮| 中文字幕亚洲图片| 日韩中文字幕在线观看| 无码人妻精品一区二区三区99不卡| 亚洲国产无套无码av电影| 中文字幕精品视频在线| 亚洲一区二区三区在线观看精品中文 | 久久久久久亚洲AV无码专区| 无码av高潮喷水无码专区线| 99精品久久久久中文字幕| 亚洲精品无码专区2| 精品一区二区无码AV | 国产成人无码综合亚洲日韩| 伊人久久精品无码av一区 | 无码AV波多野结衣久久| 在线a亚洲v天堂网2019无码| 中文字幕视频在线免费观看| 精选观看中文字幕高清无码| 色综合久久精品中文字幕首页| 国产精品 中文字幕 亚洲 欧美| 久久无码人妻精品一区二区三区| 国产在线拍偷自揄拍无码| 精品人无码一区二区三区| 国产精品免费无遮挡无码永久视频| 无码一区二区三区老色鬼| 亚洲AV无码专区国产乱码电影 | 亚洲va中文字幕无码久久| 最新国产精品无码| 亚洲精品无码高潮喷水在线| 中文字幕无码精品亚洲资源网久久| 成人无码a级毛片免费| 亚洲日产无码中文字幕| 色噜噜综合亚洲av中文无码 | 91精品国产综合久久四虎久久无码一级|