代寫MTH5510、代做Matlab程序語言

時間:2024-08-13  來源:  作者: 我要糾錯



MTH5510: QRM - Exercises Set 2
Due date: August 12, 2024;12:00pm;
Analysis the output of the Matlab code is mandatory. I am not interested just to the Matlab code.
Hand in stapled hardcopy at the beginning of the tutorial session
Note: You might want to use Matlab for this exercise; adequately report and comment on your
results (For a quick introduction to Matlab visit http://www.mathworks.com/access/helpdesk/
help/pdf_doc/matlab/getstart.pdf)
Exercise I: This question deals with a portfolio of five stocks. At time t, the values of the stocks
are S1,t = 100, S2,t = 50, S3,t = 25, S4,t = 75, and S5,t = 150. The portfolio consists of 1 share
of S1, 3 shares of S2, 5 shares of S3, 2 shares of S4, and 4 shares of S5. These risk factors are
logarithmic prices and the factor changes have mean zero and standard deviations 10?3, 2 · 10?3,
3 · 10?3, 1.5 · 10?3, and 2.5 · 10?3, respectively. The risk factors are independent.
1. Compute VaRα, VaR
mean
α , and ESα using Monte Carlo with 10,000 simulations. Do this for
α = {0.90, 0.91, . . . , 0.99}. Also use the following distributions for the risk factor changes:
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(3, μ, σ) for appropriate values of μ and σ
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(10, μ, σ) for appropriate values of μ and σ
For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(50, μ, σ) for appropriate values of μ and σ
 For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ N (μ, σ2)
Plot the results.
2. Comment on the following:
 The value of VaRα compared to VaRmeanα
 The value of VaRα and ESα as compared between the four distributions. Are the results
what you expected?
Exercise II: This question deals with delta hedged call option. The following are the Black-
Scholes parameters for a European call option at time t = 0:
T = 0.5
rt = 0.05
σt = 0.2
St = 100
K = 100.
1
The portfolio consists of long position on the call option, and the corresponding position in the
stock which makes the portfolio delta neutral. Let ? = 1day, Z1 = log(S), and Z2 = σ (r
will be considered in this problem). The risk factor changes are normally distributed with mean
zero. Their standard deviations over one day are 10?3 and 10?4 and their correlation is ?0.5.
(a) Compute V aRα, V aR
mean
α , and ESα for α = 0.95 and α = 0.99 using the following
methods:
 Monte Carlo full revaluation with 10,000 simulations
 Monte Carlo on the linearized loss with 10,000 simulations
 Variance-covariance method
Do not neglect the time derivative in any linearizion in this question.
Exercise III: Let L have the Student t distribution with ν degree of freedom. Derive the
formula
ESα(L) =
(
gν(t
?1
ν (α))
1? α
)(
ν + (t?1ν (α))2
ν ? 1
)



請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP4337、代做Python編程設計
  • 下一篇:代寫GA.2250、Python/Java程序語言代做
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    中文字幕亚洲无线码| 日韩精品无码熟人妻视频| 精品无码一区在线观看| 欧美日韩中文字幕在线观看| AA区一区二区三无码精片| 白嫩少妇激情无码| 日韩中文字幕电影| 五月婷婷无码观看| 国产成人无码久久久精品一| 伊人久久无码中文字幕| 惠民福利中文字幕人妻无码乱精品| 日韩精选无码| 国产福利电影一区二区三区久久老子无码午夜伦不 | 免费一区二区无码视频在线播放 | 国产成人无码免费看视频软件| 一二三四社区在线中文视频| 99热门精品一区二区三区无码| 无码人妻丰满熟妇精品区| 日韩AV无码一区二区三区不卡毛片| 亚洲中文字幕无码久久综合网| 亚洲精品人成无码中文毛片| av区无码字幕中文色| 4hu亚洲人成人无码网www电影首页| 亚洲AV日韩AV永久无码绿巨人| 最新国产AV无码专区亚洲| 亚洲av无码国产精品色午夜字幕 | 国产av无码专区亚洲国产精品| 无码中文字幕av免费放dvd| 亚洲精品无码专区在线在线播放| 日本无码WWW在线视频观看| 人妻中文久久久久| 精品久久久久久无码不卡 | 国模无码人体一区二区| 久久午夜夜伦鲁鲁片免费无码影视| 亚洲欧美日韩在线中文字幕 | 中文字幕人妻无码专区| 亚洲精品中文字幕乱码三区| 一本一道AV无码中文字幕| 日韩欧美群交P片內射中文| 中文字幕在线观看亚洲| 免费A级毛片无码无遮挡内射|