久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    国产成年人在线观看| 黄色片久久久久| 污污污污污污www网站免费| 欧美日韩亚洲一| 九九热视频免费| 另类小说第一页| 玩弄中年熟妇正在播放| 日韩亚洲欧美一区二区| 污视频网站观看| 国产一区二区三区精彩视频 | 小泽玛利亚视频在线观看| 中文字幕日本最新乱码视频| 欧美国产视频一区| 欧美在线观看视频免费| 中文字幕色呦呦| 日韩av影视大全| 亚洲欧美日韩综合网| 免费激情视频在线观看| jizzjizz国产精品喷水| 美女扒开大腿让男人桶| 国产精品久久久久久久乖乖| 国产在线观看欧美| 精品视频在线观看一区二区| 蜜臀av性久久久久蜜臀av| 日韩欧美一级在线| 国产精品视频一二三四区| 日韩成人午夜影院| 91视频 - 88av| 黄色成人在线看| 欧美在线观看成人| 激情视频免费网站| 天天影视色综合| 激情在线观看视频| 日韩国产精品毛片| 日本国产中文字幕| 春日野结衣av| 午夜视频你懂的| 激情在线观看视频| 影音先锋成人资源网站| 久草视频这里只有精品| 成人午夜免费在线| 日本女优爱爱视频| 日韩一区二区三区久久| 五月天丁香花婷婷| 日韩视频一二三| 亚洲 自拍 另类小说综合图区| 91九色在线观看视频| chinese少妇国语对白| 激情五月俺来也| 妞干网这里只有精品| 精品人妻人人做人人爽| 无码精品a∨在线观看中文| 国产视频一区二区视频| 国内自拍第二页| 国产不卡一区二区视频| 在线免费视频a| 久久99国产精品一区| 久久成人福利视频| 国产xxxxx视频| 麻豆md0077饥渴少妇| 狠狠干 狠狠操| 成人性生交免费看| 无码人妻精品一区二区蜜桃百度 | av网站在线观看不卡| 狠狠热免费视频| √天堂资源在线| 日韩精品一区二区三区四| 亚洲精品无码久久久久久| 日韩av一卡二卡三卡| 丰满的少妇愉情hd高清果冻传媒 | 欧美黑人经典片免费观看| aa免费在线观看| 日韩人妻精品一区二区三区| 国产91在线免费| 色姑娘综合天天| 久久综合色视频| 香蕉视频色在线观看| 国产淫片免费看| 欧美xxxx吸乳| 欧美日韩怡红院| 99久久久精品视频| 免费av不卡在线| 国产99久久九九精品无码| 手机在线国产视频| 麻豆av免费在线| 久久亚洲a v| 久久精品影视大全| 阿v天堂2017| 浴室偷拍美女洗澡456在线| 美女av免费在线观看| 黄色网络在线观看| 国产一区二区在线免费播放| 国产中文字幕二区| 无码人妻aⅴ一区二区三区日本| 男人的天堂日韩| 无码中文字幕色专区| 看全色黄大色大片| xxxx18hd亚洲hd捆绑| 天堂视频免费看| 九九九九免费视频| 欧美国产综合在线| 色爽爽爽爽爽爽爽爽| www.com久久久| 欧美伦理视频在线观看| 国产精品一线二线三线| 久久久一二三四| 加勒比av中文字幕| 久久久国产欧美| 黄色一级大片在线观看| 波多野结衣综合网| 成年在线观看视频| 国产手机视频在线观看| 亚洲欧美日韩一二三区| 尤蜜粉嫩av国产一区二区三区| 人妻熟女一二三区夜夜爱| 成人精品视频在线播放| 国产成人三级视频| 一区二区三区国产好的精华液| 午夜精品在线免费观看| 国产免费成人在线| 久久国产成人精品国产成人亚洲| 欧美又粗又长又爽做受| 久青草视频在线播放| 中文字幕第50页| 国产精品久久久影院| 黄色免费高清视频| 99久久久无码国产精品性色戒| 91网址在线观看精品| 色一情一区二区三区| 亚洲免费黄色网| 中文字幕一区二区在线观看视频| 国产九九在线视频| 中文字幕av不卡在线| 天天干天天色天天干| 天天av天天操| 特大黑人娇小亚洲女mp4| www.99riav| 国内少妇毛片视频| 日韩av一二三四区| 91看片就是不一样| 一区二区成人网| 99999精品| 欧美视频在线第一页| 大陆av在线播放| 自慰无码一区二区三区| 黄色一级二级三级| 尤物网站在线看| 久久艹国产精品| 成人免费观看视频在线观看| 狠狠热免费视频| 91精品视频国产| 999久久欧美人妻一区二区| 国产av麻豆mag剧集| 可以免费观看av毛片| 少妇黄色一级片| 可以免费看的黄色网址| 国产日本在线播放| 男人靠女人免费视频网站| 北条麻妃在线视频观看| 黄色av免费在线播放| 亚洲男人天堂2021| 日韩xxxx视频| 国产熟人av一二三区| 国产又粗又长又爽又黄的视频| 黄色三级中文字幕| 欧美一级片中文字幕| xxxx在线免费观看| 国产高清不卡无码视频| 999香蕉视频| 伊人成人免费视频| 六月婷婷在线视频| 免费观看成人网| 午夜久久久久久久久久久| av天堂永久资源网| www.com操| 日韩欧美视频免费在线观看| 精品人妻一区二区三区四区在线| 黄色成人免费看| 国产av熟女一区二区三区| 99精品视频播放| 免费不卡av在线| 亚洲中文字幕无码不卡电影| 视色视频在线观看| 国产高清www| www.色欧美| 高清无码一区二区在线观看吞精| 无码人妻精品一区二区三区在线| 在线观看免费视频污| 播放灌醉水嫩大学生国内精品| 亚洲图片 自拍偷拍| 成人在线免费播放视频| 黄色污污在线观看| 国产成人手机视频| 成年人视频网站免费| 欧美美女性视频| 欧美二区在线视频| 色乱码一区二区三区熟女| 美女网站免费观看视频| 日韩小视频网站| 18视频在线观看娇喘|