久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    国产午夜伦鲁鲁| 男人添女人下部视频免费| 午夜一级免费视频| 欧美 日韩 国产一区| av一区二区三区免费观看| 欧美一级视频在线| 无码日韩人妻精品久久蜜桃| 少妇av一区二区三区无码| 久久久无码中文字幕久...| 看看黄色一级片| 黄色手机在线视频| 国产又大又黄又粗又爽| 手机在线免费观看毛片| 国产激情在线观看视频| 国产精品亚洲二区在线观看| 播放灌醉水嫩大学生国内精品| 妞干网视频在线观看| 欧美性潮喷xxxxx免费视频看| 强开小嫩苞一区二区三区网站| 最近中文字幕免费mv| 一本之道在线视频| 天天爱天天做天天操| 法国空姐在线观看免费| 永久免费看av| 国产精彩视频一区二区| 国产精品久久中文字幕| 欧美极品欧美精品欧美| 99色精品视频| 91在线视频观看免费| 欧美精品性生活| 国产精品v日韩精品v在线观看| 色天使在线观看| av在线网站免费观看| 日韩video| 国产欧美久久久久| 91av资源网| 999在线免费视频| 日本高清一区二区视频| 三上悠亚免费在线观看| 欧美在线观看视频免费| 欧美亚洲国产成人| 欧美大尺度做爰床戏| 一区中文字幕在线观看| 波多野结衣av一区二区全免费观看| 黄页网站大全在线观看| 日本www.色| 中文字幕制服丝袜在线| 免费在线看黄色片| 亚洲精品一二三四五区| 欧美精品 - 色网| 美女av免费观看| 日本精品一区二区三区四区| 中文字幕亚洲乱码| 亚洲啊啊啊啊啊| 九九九九免费视频| 91精品视频国产| 日本欧美黄色片| 在线播放av中文字幕| 国产一区二区三区小说| 亚洲视频在线观看一区二区三区| 国产永久免费网站| 可以看毛片的网址| 五月天亚洲视频| 国产欧美日韩小视频| 自拍偷拍21p| 精品免费久久久久久久| 热久久精品免费视频| 视色,视色影院,视色影库,视色网| 乱妇乱女熟妇熟女网站| 岛国av免费在线| 日本精品一区在线观看| 精品一区二区成人免费视频 | 欧美精品久久久久久久久久久| 免费看黄色一级大片| 狠狠精品干练久久久无码中文字幕| 国产91xxx| 亚洲国产欧美91| 免费在线观看日韩视频| 视色,视色影院,视色影库,视色网 日韩精品福利片午夜免费观看 | 欧美 国产 小说 另类| 手机在线观看日韩av| 蜜臀久久99精品久久久酒店新书| 青青视频免费在线观看| 天天综合网日韩| 国产免费观看高清视频| 日本三级福利片| 九九热在线免费| 尤物av无码色av无码| 路边理发店露脸熟妇泻火| 成人午夜激情av| 久久久亚洲精品无码| 免费观看国产视频在线| 中文字幕亚洲影院| www日韩视频| 国产91在线视频观看| 欧美a级免费视频| 欧美一级小视频| 色综合手机在线| av免费在线播放网站| 国产一级爱c视频| 黄色网络在线观看| 涩涩网站在线看| 中文字幕 91| 青青草av网站| 日本在线观看a| 国产精品国产亚洲精品看不卡| 少妇大叫太大太粗太爽了a片小说| 亚洲一二区在线观看| 天天干天天草天天| 三级a在线观看| 国产视频一区二区三区在线播放| 日韩欧美一区二| 妺妺窝人体色777777| 青青青青在线视频| 日韩一级特黄毛片| 精品嫩模一区二区三区| 国产盗摄视频在线观看| 日韩视频在线观看视频| 亚洲高清在线不卡| 在线免费黄色网| 涩涩网站在线看| 奇米777在线视频| 午夜影院免费版| 女女同性女同一区二区三区按摩| 91香蕉视频网址| 99精品视频网站| 50度灰在线观看| www.亚洲成人网| 日韩极品视频在线观看| 亚洲精品无码国产| 老太脱裤子让老头玩xxxxx| 黄色成人在线看| 99热亚洲精品| 男人日女人bb视频| 999精品网站| 欧美wwwwwww| 国产探花在线观看视频| 国产三级中文字幕| 91亚洲精品国产| 亚洲精品蜜桃久久久久久| 黄页免费在线观看视频| 欧美深夜福利视频| 白嫩少妇丰满一区二区| 高清一区在线观看| 日本阿v视频在线观看| 国产一区二区三区小说| 国产xxxxx在线观看| jizz大全欧美jizzcom| 国产精品探花在线播放| 成年丰满熟妇午夜免费视频| 激情五月宗合网| 国产av人人夜夜澡人人爽| 亚洲黄色av片| www.日本在线视频| 那种视频在线观看| 九九热免费在线观看| 最近免费观看高清韩国日本大全| 欧美精品一区二区三区三州| 成人在线观看a| 91热视频在线观看| 无码 制服 丝袜 国产 另类| www日韩视频| 麻豆md0077饥渴少妇| 国产精品久久中文字幕| 午夜两性免费视频| 大片在线观看网站免费收看| 日韩在线视频在线观看| 国内外成人免费在线视频| 特大黑人娇小亚洲女mp4| 成年网站在线免费观看| 手机在线观看日韩av| 亚洲熟妇无码一区二区三区| 伊人国产在线视频| 国产青草视频在线观看| 国产一级做a爰片久久| 粉嫩av一区二区三区天美传媒 | 欧美一级特黄a| 91看片淫黄大片91| 国产精品亚洲二区在线观看| 日韩人妻精品一区二区三区| 男人操女人免费软件| 一级全黄肉体裸体全过程| 久久国产成人精品国产成人亚洲| 亚洲欧美手机在线| 99精品人妻少妇一区二区| 亚洲五月激情网| 已婚少妇美妙人妻系列| 蜜臀av性久久久久蜜臀av| 黄色在线视频网| 欧美大片在线播放| 国产人妻互换一区二区| 亚洲欧美另类动漫| 九色自拍视频在线观看| 搡的我好爽在线观看免费视频| 成人免费毛片网| 久久久久福利视频| 亚洲xxx在线观看| 男人的天堂99| 久无码久无码av无码| 国产精品自在自线|