久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代寫DTS304TC、代做Java/c++程序語言

時間:2024-03-04  來源:  作者: 我要糾錯



XJTLU Entrepreneur College (Taicang) Cover Sheet
Module code and Title DTS304TC Machine Learning
School Title School of AI and Advanced Computing
Assignment Title Assessment Task 1
Submission Deadline 23:59, 24th March (Sunday), 2024
(China Time, GMT + 8)
Final Word Count N/A
If you agree to let the university use your work anonymously for teaching and 
learning purposes, please type “yes” here.
I certify that I have read and understood the University’s Policy for dealing with Plagiarism, Collusion 
and the Fabrication of Data (available on Learning Mall Online). With reference to this policy I certify 
that:
? My work does not contain any instances of plagiarism and/or collusion.
My work does not contain any fabricated data.
By uploading my assignment onto Learning Mall Online, I formally declare that all of the 
above information is true to the best of my knowledge and belief.
Scoring – For Tutor Use
Student ID 
Stage of Marking Marker
Code
Learning Outcomes Achieved (F/P/M/D)
(please modify as appropriate)
Final 
Score
A B C
1
st Marker – red pen
Moderation
– green pen
IM
Initials
The original mark has been accepted by the moderator (please circle 
as appropriate):
Y / N
Data entry and score calculation have been checked by another tutor 
(please circle):
Y
2
nd Marker if 
needed – green pen
For Academic Office Use Possible Academic Infringement (please tick as appropriate)
Date 
Received
Days 
late
Late 
Penalty
? Category A
Total Academic Infringement Penalty (A,B, 
C, D, E, Please modify where necessary) 
_____________________ 
? Category B
? Category C
? Category D
? Category E
DTS304TC Machine Learning
Coursework – Assessment Task 1
Submission deadline: TBD
Percentage in final mark: 50%
Learning outcomes assessed: 
A. Demonstrate a solid understanding of the theoretical issues related to problems that machine learning 
algorithms try to address.
B. Demonstrate understanding of properties of existing ML algorithms and new ones.
C. Apply ML algorithms for specific problems.
Individual/Group: Individual
Length: The assessment has a total of 4 questions which gives 100 marks. The submitted file must be in 
pdf format.
Late policy: 5% of the total marks available for the assessment shall be deducted from the assessment 
mark for each working day after the submission date, up to a maximum of five working days
Risks:
? Please read the coursework instructions and requirements carefully. Not following these instructions 
and requirements may result in loss of marks.
? The formal procedure for submitting coursework at XJTLU is strictly followed. Submission link on
Learning Mall will be provided in due course. The submission timestamp on Learning Mall will be 
used to check late submission.
__________________________________________________________________
Question 1: Coding Exercise - Heart Disease Classification with Machine Learning (50 Marks)
In this coding assessment, you are presented with the challenge of analyzing a dataset that contains 
patient demographics and health indicators to predict heart disease classifications. This entails solving a 
multi-class classification problem with five distinct categories, incorporating both categorical and 
numerical attributes.
Your initial task is to demonstrate proficiency in encoding categorical features and imputing missing 
values to prepare the dataset for training a basic classifier. Beyond these foundational techniques, you are 
invited to showcase your advanced skills. This may include hyperparameter tuning using sophisticated 
algorithms like the Asynchronous Successive Halving Algorithm (ASHA). You are also encouraged to 
implement strategies for outlier detection and handling, model ensembling, and addressing class 
imbalance to enhance your model's performance.
Moreover, an external test set without ground truth labels has been provided. Your classifier's 
performance will be evaluated based on this set, underscoring the importance of building a model with 
strong generalization capabilities.
The competencies you develop during this practical project are not only essential for successfully 
completing this assessment but are also highly valuable for your future pursuits in the field of data science.
Throughout this project, you are encouraged to utilize code that was covered during our Lab sessions, as 
well as other online resources for assistance. Please ensure that you provide proper citations and links to 
any external resources you employ in your work. However, the use of Generative AI for content 
generation (such as ChatGPT) is not permitted on all assessed coursework in this module.
Project Steps:
a) Feature Preprocessing (8 Marks)
 You are required to demonstrate four key preprocessing steps: loading the dataset, encoding 
categorical features, handling missing values, and dividing the dataset into training, validation, 
and test sets.
 It is crucial to consistently apply the same feature preprocessing steps—including encoding 
categorical features, handling missing values, and any other additional preprocessing or custom 
modifications you implement—across the training, validation, internal testing, and the externally 
provided testing datasets. For efficient processing, you may want to consider utilizing the 
sklearn.pipeline and sklearn.preprocessing library functions.
b) Training Classifiers (10 Marks)
 Train a logistic regression classifier with parameter tuned using grid search, and a random forest 
classifier with parameters tuned using Async Successive Halving Algorithm (ASHA) with 
ray[tune] libraries. You should optimize the model's AUC score during the hyperparameter tuning 
process.
 You should aim to optimize a composite score, which is the average of the classification accuracy 
and the macro-averaged F1 score. This objective encourages a balance between achieving high 
accuracy overall and ensuring that the classifier performs well across all classes in a balanced 
manner, which is especially important in multi-class classification scenarios where class 
imbalance might be a concern.
To clarify, your optimization goal is to maximize a composite accuracy metric defined as follows:
accuracy = 0.5 * (f1_score(gt, pred, average='macro') + accuracy_score(gt, pred))
In this formula, f1_score and accuracy_score refer to functions provided by the scikit-learn 
library, with f1_score being calculated with the 'macro' average to treat all classes equally.
 Ensure that you perform model adjustments, including hyperparameter tuning, on the validation 
set rather than the testing set to promote the best generalization of your model.
 We have included an illustrative example of how to implement the ASHA using the ray[tune] 
library. Please refer to the notebook DTS304TC_ASHA_with_Ray_Tune_Example.ipynb located 
in our project data folder for details.
c) Additional Tweaking and External Test Set Benchmark (19 Marks)
 You are encouraged to explore a variety of advanced techniques to improve your model's 
predictive power. 
1. Utilizing different classifiers, for example, XGBoost.
2. Implementing methods for outlier detection and treatment.
3. Creating model ensembles with varied validation splits.
4. Addressing issues of class imbalance.
5. Applying feature engineering strategies, such as creating composite attributes.
6. Implementing alternative validation splitting strategies, like cross-validation or stratified 
sampling, to enhance model tuning.
7. Additional innovative and valid methods not previously discussed.
You will be awarded 3 marks for successfully applying any one of these methods. Should you 
incorporate two or more of the aforementioned techniques, a total of 6 marks will be awarded.
Please include code comments that explain how you have implemented these additional 
techniques. Your code and accompanying commentary should explicitly state the rationale behind 
the selection of these supplementary strategies, as well as the underlying principles guiding your 
implementation. Moreover, it should detail any changes in performance, including improvements, 
if any, resulting from the application of these strategies. An additional 4 marks will be awarded 
for a clear and comprehensive explanation. To facilitate a streamlined review and grading 
process, please ensure that your comments and relevant code are placed within a separate code 
block in your Jupyter notebook, in a manner that is readily accessible for our evaluation.
 Additionally, utilize the entire dataset and the previously determined optimal hyperparameters
and classification pipeline to retrain your top-performing classifier. Then, apply this model to the 
features in 'dts304tc_a1_heart_disease_dataset_external_test.csv', which lacks true labels, to 
produce a set of predictive probability scores. Save these probabilistic scores in a table with two 
columns: the first column for patient IDs and the second for the output classification labels. 
Export this table to a file named external_test_results_[your_student_id].csv. Submit this file for 
evaluation. In the external evaluation conducted by us, your scores will be benchmarked against 
the performance of models developed by your classmates. You will receive four marks for 
successfully completing the prescribed classifier retraining and submission process. Additionally, 
your classifier's benchmark ranking—based on its performance relative to models developed by 
your peers—will be assigned five marks, contingent upon your standing in the ranking.
d) Result Analysis (8 Marks)
 For your best-performing model, compute critical performance metrics such as precision, recall, 
specificity, and the F1 score for each class. Additionally, generate the confusion matrix based on 
your internal test set. Ensure that the code for calculating these performance metrics, as well as 
the resulting statistics, are clearly displayed within your Jupyter notebook. For ease of review, 
position these elements towards the end of your notebook to provide direct access to your 
outcomes.
 Conduct a feature importance analysis by utilizing the feature importance scoring capabilities 
provided by your chosen classifier. What are the top three most important features for classifying 
this medicial condition? If your best performing model does not offer feature importance scoring, 
you may utilize an alternative model for this analysis. Present the results of the feature 
importance analysis within your Jupyter notebook using print statements or code comments. 
Place these relevant code and findings towards the end of the notebook to facilitate easy review of 
your results.
e) Project Submission Instructions (5 Marks - Important, Please Read!)
 Submit your Jupyter notebook in both .ipynb and .PDF formats. Ensure that in the PDF version, 
all model execution results, as well as your code annotations and analyses, are clearly visible. It is 
critical to maintain a well-organized structure in your Jupyter notebook, complemented by clear 
commentary using clean code practices. Your submission's readability and navigability are 
crucial; we cannot assign a score if we cannot understand or locate your code and results. You 
will receive 5 points for clarity in code structure and quality of code comments.
To maintain the readability of your code when converting your Jupyter notebook to a PDF, ensure 
that no single line of code extends beyond the printable page margin, thus preventing line 
truncation. If necessary, utilize line continuation characters or implicit line continuation within 
parentheses, brackets, or braces in Python to break up longer lines of code. After converting to 
PDF, thoroughly review the document to confirm that all code is displayed completely and that 
no line truncation has occurred.
If you have written supplementary code that is not contained within the Jupyter notebook, you 
must submit that as well to guarantee that your Jupyter notebook functions correctly. 
Nevertheless, our primary basis for grading will be the PDF version of your Jupyter notebook. 
Please ensure that all necessary code is included so that the notebook can be executed seamlessly,
and your results are reproducible.
 Submit the results of your external test as a file named external_test_[your_student_id].csv. This 
CSV file must be correctly formatted: the first column must contain patient IDs, and the second 
column must list your predicted classification labels. Any deviation from this format may result 
in the file being unprocessable by our grading software, and therefore unable to be scored.
Project Material Access Instructions
To obtain the complete set of materials for our project, including the dataset, code, and Jupyter notebook 
files, please use the links provided below:
 (OneDrive Link): https://1drv.ms/u/s!AoRfWDkanfAYnvcrXTKMGhNzRztf0g?e=JDwmbR
 (Baidu Drive Link): https://pan.baidu.com/s/1AXSRYO6ujTu1iNspdkIuUA?pwd=h4js
Download password: h4js
When prompted, use the following password to unlock the zip file: DTS304TC (please note that it is case?sensitive and should be entered in all capital letters).
Additionally, for ease of reference, the project's Jupyter notebooks have been appended to the end of this 
document.
Please note that the primary library dependencies for this project include pandas, scikit-learn, xgboost, 
and the ray library with the tune module enabled (ray[tune]).
Question 2: Ensemble Learning (18 marks):
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear calculation steps and explain the relevant concepts using your own words.
(a) Majority Voting with Independent Classifiers (8 Marks)
1. Given individual classifiers C1, C2, and C3 with statistically independent error rates of 40%, 35%, 
and 35% respectively, calculate the accuracy of the majority voting ensemble composed of classifiers 
C1, C2, and C3. Provide the steps you use to determine the ensemble's accuracy, assuming the 
classifiers' decisions are statistically independent. (5 Marks)
(Hints: Calculate the ensemble 's accuracy by summing the probability that all classifiers are correct with 
the probabilities of exactly two classifiers being correct while the third is incorrect)
2. Point out the similarities and differences between the majority voting ensemble method and Random 
Forest, emphasizing the strategies employed by Random Forest to attain higher accuracy. (3 Marks)
(b) AdaBoost Algorithm (10 Marks)
Consider the process of creating an ensemble of decision stumps, referred to as ????, through the standard 
AdaBoost method.
The diagram above shows several two-dimensional labeled points along with the initial decision stump 
we've chosen. This stump gives out binary values and makes its decisions based on a single variable (the 
cut-off). In the diagram, there's a tiny arrow perpendicular to the classifier's boundary that shows where 
the classifier predicts a +1. Initially, every point has the same weight.
1. Identify all the points in the above diagram that will have their weights increased after adding the 
initial decision stump (adjustments to AdaBoost sample weights after the initial stump is used) (2 
marks)
2. On the same diagram, draw another decision stump that could be considered in the next round of 
boosting. Include the boundary where it makes its decision and indicate which side will result in a +1 
prediction. (2 marks)
3. Will the second basic classifier likely get a larger importance score in the group compared to the first 
one? To put it another way, will ??2 > ??1? Just a short explanation is needed (Calculations are not 
required). (3 marks)
4. Suppose you have trained two models on the same set of data: one with AdaBoost and another with a 
Random Forest approach. The AdaBoost model does better on the training data than the Random 
Forest model. However, when tested on new, unseen data, the Random Forest model performs better. 
What could explain this difference in performance? What can be done to make the AdaBoost model 
perform better? (3 marks)
Question 3: K-Means and GMM Clustering (7 marks)
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear analysis steps and explain the relevant concepts using your own words.
1. Reflect on the provided data for training and analyze the outcomes of K-Means and GMM techniques. 
Can we anticipate identical centroids from these clustering methods? Please state your reasoning. (3
marks)
2. Determine which of the given cluster assignments could be a result of applying K-means clustering, 
and which could originate from GMM clustering, providing an explanation for your reasoning. (4 
marks)
Question 4 - Reinforcement Learning (25 marks)
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear analysis steps and explain the relevant concepts using your own words.
1. Describe the five key components of reinforcement learning using the graph below, explain each of 
the components and their relationships. (10 marks.)
import gym
import numpy as np
env = gym.make('CartPole-v1')
state_space_size = env.observation_space.shape[0]
action_space_size = env.action_space.n
q_table = np.zeros((state_space_size, action_space_size))
learning_rate = 0.1
discount_factor = 0.99
epsilon = 0.1
num_episodes = 1000
# Q-learning algorithm
for episode in range(num_episodes):
 state = env.reset()
 done = False
 while not done:
 # Exploration-exploitation strategy
 if np.random.uniform(0, 1) < epsilon:
 action = env.action_space.sample() # Explore
 else:
 action = np.argmax(q_table[state, :]) # Exploit
 # Take action and observe the next state and reward
 next_state, reward, done, _ = env.step(action)
 # Update Q-value using the Q-learning formula
 q_table[state, action] = (1 - learning_rate) * q_table[state, action] +
 learning_rate * (reward + discount_factor * np.max(q_table[next_state, :]))
 # Move to the next state
 state = next_state
# Testing the learned policy
total_reward = 0
state = env.reset()
while True:
 action = np.argmax(q_table[state, :])
 state, reward, done, _ = env.step(action)
 total_reward += reward
 if done:
 break
print(f"Total reward: {total_reward}")
2. The questions below refer to the above code example:
a) What is the significance of the exploration-exploitation strategy in reinforcement learning, and how is 
it implemented in the code? (5 marks)
b) How would you change this code to use deep learning? You don’t need to write the code, only 
describe the major changes you would make and explain the advantage of deep learning approaches 
over the Q-table. (5 marks)
c) Describe the current reward function for Cartpole. Design a reward function of your own and explain 
your reward function. (5 marks)

.ip… 1/2
# to student: this is an code snapshot showing how to use ray tune framework to 
# you are responsible for completing the code, debugging and making sure it work
import sklearn.datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn import metrics
import os
from ray.tune.schedulers import ASHAScheduler
from sklearn.model_selection import train_test_split
from ray import tune
from ray import train
def train_rf(config: dict, data=None):
 # Initialize the RandomForestClassifier with the configuration
 classifier = RandomForestClassifier(
 n_estimators=config["n_estimators"],
 max_depth=config["max_depth"],
 min_samples_split=config["min_samples_split"],
 min_samples_leaf=config["min_samples_leaf"],
 class_weight="balanced",
 random_state=42
 )
 
 # Fit the RandomForestClassifier on the training data
 X_train = data[0]
 y_train = data[1]
 X_validation = data[2]
 y_validation = data[3]
 # To Be filled: Train your Random Forest Classifier here
 # To Be filled: Evaluate the classifier on the validation set here and get e
 
 # Send the accuracy to Ray Tune
 train.report({'accuracy': accuracy})
# note that X_train, y_train, X_validation, y_validation are your training and v
tunable_function = tune.with_parameters(train_rf, data=[X_train, y_train, X_vali
def tune_random_forest(smoke_test=False):
 # Define the search space for hyperparameters
 search_space = {
 "n_estimators": # setup your search space here
 "max_depth": # setup your search space here
 "min_samples_split": # setup your search space here
 "min_samples_leaf": # setup your search space here
 }
 
 # Define the scheduler for early stopping
 scheduler = ASHAScheduler(
 max_t= # setup your ASHA parameter here,
 grace_period=# setup your ASHA parameter here,
 reduction_factor=# setup your ASHA parameter here
 )
 
 # Set up the tuner
 tuner = tune.Tuner(
 tunable_function,
In [ ]:

.ip… 2/2
 tune_config=tune.TuneConfig(
 metric="accuracy",
 mode="max",
 scheduler=scheduler,
 num_samples=1 if smoke_test else 200,
 ),
 param_space=search_space,
 )
 
 # Execute the tuning process
 results = tuner.fit()
 
 return results
# Run the tuning function
best_results = tune_random_forest(smoke_test=False)
best_trial = best_results.get_best_result(metric="accuracy", mode="max")
# Get the best trial's hyperparameters
best_params = best_trial.config
# Print the best hyperparameters
print("Best hyperparameters found were: ", best_params)
# Initialize a new RandomForestClassifier with the best hyperparameters
best_rf = RandomForestClassifier(**best_params, random_state=42)
# The remaining part of your code continues ....

請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 



 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:AcF633代做、Python設計編程代寫
  • 下一篇:SCC312代做、代寫Java編程語言
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    性久久久久久久久久久久久久| 男人天堂1024| 成熟丰满熟妇高潮xxxxx视频| 亚洲制服中文字幕| 国产成人久久777777| 91黄色在线看| 激情久久综合网| 992kp快乐看片永久免费网址| 老太脱裤让老头玩ⅹxxxx| 男女激烈动态图| 污污视频在线免费| 中文字幕在线视频精品| 免费黄色一级网站| 毛片av免费在线观看| 欧美变态另类刺激| 成人在线国产视频| 日本xxx免费| 国模吧无码一区二区三区| 色戒在线免费观看| 亚洲理论电影在线观看| 欧洲xxxxx| 日本黄xxxxxxxxx100| 超碰影院在线观看| 成人免费视频久久| 日韩精品一区二区在线视频| 日韩人妻一区二区三区蜜桃视频| 三年中国中文在线观看免费播放| 日韩精品视频一区二区在线观看| 精品少妇一区二区三区在线| 玖玖爱视频在线| 国产白丝袜美女久久久久| 日本高清免费在线视频| 黄色国产精品视频| 黄色片免费在线观看视频| 中文字幕在线导航| 成人一区二区免费视频| 香蕉精品视频在线| 999精品视频在线| 日韩一区二区三区久久| 日批视频在线免费看| 国产四区在线观看| 欧美男女交配视频| 已婚少妇美妙人妻系列| 九色91popny| 成人高清在线观看视频| 91看片就是不一样| 国产av第一区| 日本一本中文字幕| 92看片淫黄大片一级| 国产96在线 | 亚洲| 毛片av免费在线观看| 亚洲精品久久久久久宅男| 潘金莲一级淫片aaaaaa播放1| 手机在线国产视频| 天天干天天干天天干天天干天天干| 亚洲欧美视频二区| 丁香婷婷激情网| 亚洲男人天堂2021| www,av在线| 热久久久久久久久| 欧美a级免费视频| 情侣黄网站免费看| 日韩av一卡二卡三卡| 毛片毛片毛片毛| 99热这里只有精品免费| 国产精品igao激情视频| 男女av免费观看| 免费国产成人看片在线| 欧洲精品视频在线| 不要播放器的av网站| 九一精品在线观看| 777久久精品一区二区三区无码| 六月婷婷激情网| av动漫免费看| 艳母动漫在线观看| www.日日操| av动漫在线免费观看| 免费观看成人网| 久青草视频在线播放| 亚洲视频第二页| 国产黄页在线观看| 女女同性女同一区二区三区按摩| 992tv快乐视频| 一本岛在线视频| 亚洲天堂一区二区在线观看| 欧美 日韩 国产 在线观看| 黑人巨茎大战欧美白妇| 美女扒开大腿让男人桶| 手机av在线免费| 成人羞羞国产免费网站| 一区二区三区国产免费| 亚洲美女性囗交| av黄色在线网站| 屁屁影院ccyy国产第一页| 国产亚洲综合视频| 亚洲国产一二三精品无码 | 国产视频九色蝌蚪| 天天干天天曰天天操| 亚洲成人福利在线观看| 欧美日本视频在线观看| 日本高清xxxx| 手机免费av片| 欧美精品一区二区性色a+v| 亚洲天堂网一区| 凹凸国产熟女精品视频| 国产一区二区三区小说| 小泽玛利亚av在线| 蜜臀av.com| 亚洲综合20p| 乱妇乱女熟妇熟女网站| 久久亚洲a v| wwwjizzjizzcom| 中文字幕の友人北条麻妃| 9999在线观看| 自拍一级黄色片| 91丝袜超薄交口足| 久久亚洲中文字幕无码| 成人毛片100部免费看| 熟女少妇精品一区二区| 97av中文字幕| 日本成年人网址| 中文字幕无码精品亚洲资源网久久| 欧美精品性生活| 日本中文字幕高清| 日韩免费毛片视频| 97在线播放视频| 欧美激情精品久久久久久小说| 国产亚洲欧美在线视频| 欧美少妇在线观看| 特级西西人体www高清大胆| 黄色一级免费大片| 成人免费毛片播放| 超碰av在线免费观看| 久久精品xxx| 一二三四视频社区在线| 青青艹视频在线| 日本三级中文字幕在线观看| 9l视频自拍9l视频自拍| 日韩肉感妇bbwbbwbbw| 日本一二区免费| 一区二区三区四区久久| 激情成人开心网| 波多野结衣在线免费观看| 免费在线观看的av网站| 黄色一级大片在线观看| 久久久久国产一区| 色姑娘综合天天| 九九九九九国产| 亚洲精品怡红院| 国产日产欧美视频| 99免费视频观看| 国产在线观看中文字幕| 国内自拍中文字幕| av磁力番号网| 国产曰肥老太婆无遮挡| 成年人视频大全| 国产精品波多野结衣| 欧美第一页浮力影院| 99精品免费在线观看| 欧美 日韩 国产 高清| 亚洲五月天综合| 超碰网在线观看| 一女二男3p波多野结衣| 一本色道久久88亚洲精品综合| 爱爱爱视频网站| 免费无码毛片一区二三区| www.在线观看av| 国产激情在线观看视频| 国产精品无码乱伦| 水蜜桃色314在线观看| 亚洲福利精品视频| 男女裸体影院高潮| www.黄色网址.com| 免费看污污视频| 热这里只有精品| 欧美h视频在线观看| 一二三四视频社区在线| 免费看涩涩视频| 日韩黄色片在线| 国产一伦一伦一伦| 免费特级黄色片| 久久久亚洲精品无码| 浮妇高潮喷白浆视频| 少妇黄色一级片| 日韩va在线观看| 欧美日韩不卡在线视频| 久久久久xxxx| 路边理发店露脸熟妇泻火| 国产成人久久777777| 91精品国产毛片武则天| 97干在线视频| 天天摸天天舔天天操| 久久久一二三四| 美女喷白浆视频| 久久久久久久久久一区二区| 国产美女网站在线观看| 99亚洲精品视频| 91看片在线免费观看| a√天堂在线观看| 无需播放器的av|