久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

COMP 315 代做、代寫 java 語言編程

時間:2024-03-10  來源:  作者: 我要糾錯



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    国产精品三级一区二区| av观看免费在线| 欧洲精品一区二区三区久久| 天天爽夜夜爽一区二区三区| 丰满少妇久久久| 黄色一级视频播放| 天天操天天干天天做| 久久久久人妻精品一区三寸| 无码av天堂一区二区三区| 久久久成人精品一区二区三区 | 欧美激情第四页| 中文字幕丰满乱码| 超碰在线97免费| 日韩视频在线免费看| 九九热精品国产| 亚洲欧美在线精品| 男女啪啪网站视频| 精品国产成人av在线免| aⅴ在线免费观看| 一本大道熟女人妻中文字幕在线| 岛国大片在线播放| 久久精品国产sm调教网站演员| 成人免费a级片| 欧美激情亚洲天堂| 国产精品久久久久久久久电影网| 男人c女人视频| 日韩网站在线免费观看| 草草视频在线免费观看| 国产a级片网站| 久久久久久久久久网| 黄色一级片播放| 97视频在线免费播放| 欧美日韩在线免费播放| 少妇人妻互换不带套| 四季av一区二区| 日韩精品视频一二三| 一级做a爱视频| 只有这里有精品| 欧美乱大交xxxxx潮喷l头像| aa免费在线观看| 中日韩av在线播放| 亚洲国产精品影视| 国产av熟女一区二区三区| 精品成在人线av无码免费看| 欧美精品自拍视频| 久久综合久久色| 亚洲精品蜜桃久久久久久| 亚洲一区二区图片| 每日在线观看av| 国产在线观看福利| 91高清国产视频| 日本一二三区视频在线| 99在线免费视频观看| 久久久久久香蕉| 强伦女教师2:伦理在线观看| 分分操这里只有精品| 国产又大又黄又粗的视频| 在线免费看v片| 日本免费a视频| 十八禁视频网站在线观看| 在线观看中文av| 欧美激情视频免费看| 嫩草影院国产精品| 欧美aaa在线观看| 亚洲午夜精品久久久久久人妖| 无限资源日本好片| 国内自拍中文字幕| 亚洲综合在线网站| 最新av网址在线观看| 日本黄色三级大片| 免费观看中文字幕| 国产成人久久777777| 亚洲国产精品影视| 国产三级日本三级在线播放| 国产人妻人伦精品| 天堂av在线网站| 日韩欧美不卡在线| 韩国一区二区在线播放| 久久免费视频3| 99re99热| 69久久久久久| 国产日产欧美视频| 7777在线视频| 亚洲第一中文av| 99精品人妻少妇一区二区| 久久国产精品免费观看| 五月婷婷六月合| av动漫在线观看| 亚洲五码在线观看视频| 国产视频1区2区3区| 国产精品333| 9191国产视频| 深爱五月综合网| 搡女人真爽免费午夜网站| 欧美精品久久久久久久自慰| 超碰97免费观看| 视频免费1区二区三区| 久久精品免费一区二区| 日韩一级特黄毛片| 欧美性受xxxx黒人xyx性爽| 网站一区二区三区| av免费播放网址| 免费毛片网站在线观看| 糖心vlog在线免费观看| 成人亚洲免费视频| 国产福利在线免费| 麻豆三级在线观看| 欧在线一二三四区| 自慰无码一区二区三区| 99热亚洲精品| 日韩 欧美 视频| 欧美在线观看视频免费| 久久久久久久久影视| 日韩欧美色视频| av在线免费看片| 青青草久久伊人| 一级做a免费视频| 性生活免费在线观看| 精品久久久久久久无码| 97视频在线免费播放| 国产l精品国产亚洲区久久| www黄色日本| 欧美精品一区二区三区免费播放| 女性女同性aⅴ免费观女性恋| 久色视频在线播放| 国产97在线 | 亚洲| 可以在线看的av网站| 精品国产av无码一区二区三区| 真人做人试看60分钟免费| av 日韩 人妻 黑人 综合 无码| 国产一区一区三区| 三级在线免费观看| av片在线免费| 欧美一区二区视频在线播放| 激情五月六月婷婷| 被灌满精子的波多野结衣| av免费看网址| 韩国一区二区av| xxww在线观看| 永久av免费在线观看| 日韩亚洲欧美一区二区| av免费看网址| 男人日女人bb视频| 天天操天天爽天天射| 最新免费av网址| 午夜啪啪福利视频| 亚洲精品蜜桃久久久久久| 91专区在线观看| 欧美伦理视频在线观看| 日韩欧美国产片| 在线观看日本www| 成人高清dvd| 欧美色图另类小说| 中文字幕永久有效| 男女裸体影院高潮| 亚洲 高清 成人 动漫| 色国产在线视频| 成人免费看片视频在线观看| 久久久久免费看黄a片app| 国产视频一区二区视频| 超碰在线超碰在线| 国产欧美日韩网站| 在线观看免费视频高清游戏推荐| 天天色天天干天天色| 欧美 日韩 亚洲 一区| 国产精品入口免费软件| 亚洲精品偷拍视频| 18禁免费无码无遮挡不卡网站| 天天干天天爽天天射| 日本老太婆做爰视频| 成人在线观看a| 99中文字幕在线观看| 国产老熟妇精品观看| 欧美激情第一区| 91专区在线观看| 国产毛片久久久久久| 人妻久久久一区二区三区| 向日葵污视频在线观看| 欧美高清中文字幕| 色一情一区二区三区| 欧美一级免费播放| 国产精品一区二区小说| 日韩久久久久久久久久久久| 国产成人无码av在线播放dvd| 亚洲区成人777777精品| 欧美黄色一级片视频| 成人av在线播放观看| 污网站在线免费| 国产亚洲天堂网| 免费日韩在线观看| 思思久久精品视频| 成年网站在线免费观看| 女女同性女同一区二区三区按摩| 国产日韩成人内射视频| www插插插无码免费视频网站| 女人高潮一级片| 欧美黑人又粗又大又爽免费| 免费一级淫片aaa片毛片a级| 国产毛片久久久久久| 免费看a级黄色片|