久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    日韩av综合在线观看| ijzzijzzij亚洲大全| 亚洲精品www.| 国产欧美在线一区| 免费的一级黄色片| 国产黑丝在线视频| 日韩高清第一页| 最近免费中文字幕中文高清百度| 日本三级中文字幕在线观看| 五月天激情播播| 国产xxxxx视频| 国产主播在线看| 国产资源在线视频| 欧美一级欧美一级| 欧洲精品在线播放| 日本a级片在线观看| 亚洲天堂一区二区在线观看| 少妇一级淫免费放| 人妻熟女一二三区夜夜爱| 秋霞无码一区二区| 青青青青草视频| 精品人妻少妇一区二区| 五月丁香综合缴情六月小说| 免费在线精品视频| 天天想你在线观看完整版电影免费| 欧美少妇一级片| 亚洲高潮无码久久| 国产精品啪啪啪视频| 欧美一级免费在线观看| 99精品一区二区三区的区别| 超级碰在线观看| 国内少妇毛片视频| 国产一线二线三线女| www插插插无码免费视频网站| www成人免费| 久久久久免费看黄a片app| 青青草国产精品视频| 亚洲 欧美 日韩 国产综合 在线| 日本a在线免费观看| 久久久久久久久久久福利| 不要播放器的av网站| 午夜久久久精品| 久久精品一二三四| 日韩久久久久久久久久久久| 日本a视频在线观看| 韩国一区二区av| 久久99爱视频| 中文字幕超清在线免费观看| 日韩久久久久久久久久久久| 91视频最新入口| 99re精彩视频| 久久综合亚洲精品| 国产二区视频在线播放| 99热一区二区| 成人一级生活片| 欧美自拍小视频| 亚洲综合伊人久久| 阿v天堂2018| 天天碰免费视频 | 黑鬼大战白妞高潮喷白浆| 久久久久久蜜桃一区二区| 久久天天东北熟女毛茸茸| 九九爱精品视频| 午夜激情在线观看视频| ijzzijzzij亚洲大全| 国产精品后入内射日本在线观看| 黄色片视频在线| 国产精品国三级国产av| 久久精品视频91| 中文字幕第50页| 成人免费观看毛片| 在线观看视频在线观看| 久久久999视频| 国产999免费视频| 成人免费毛片网| 浴室偷拍美女洗澡456在线| 春日野结衣av| 日韩欧美中文视频| 国产免费毛卡片| 三上悠亚免费在线观看| 天天影视综合色| 2019日韩中文字幕mv| 男人午夜视频在线观看| 欧美日韩在线不卡视频| 黄色片免费在线观看视频| 国产一二三区av| 欧美aⅴ在线观看| 免费极品av一视觉盛宴| 日韩极品视频在线观看| 欧美精品aaaa| 日韩欧美亚洲天堂| 麻豆中文字幕在线观看| 国内外免费激情视频| 可以免费看的黄色网址| 中文字幕亚洲欧洲| 116极品美女午夜一级| 免费看污污视频| 玖玖爱视频在线| aa在线免费观看| 国产欧美日韩小视频| 四虎成人在线播放| 超碰在线97免费| av黄色在线网站| 日韩国产一级片| 日韩精品久久一区二区| www激情五月| 国内自拍视频网| 亚洲自偷自拍熟女另类| 一级性生活视频| 国产精品无码乱伦| 小早川怜子一区二区三区| 国产三级国产精品国产专区50| 强开小嫩苞一区二区三区网站| 婷婷激情综合五月天| 高清在线观看免费| 波多野结衣免费观看| 男人亚洲天堂网| 999一区二区三区| 亚洲精品乱码久久久久久动漫| 东京热加勒比无码少妇| 久久久免费视频网站| 久久国产成人精品国产成人亚洲| 少妇高潮毛片色欲ava片| www.日本在线视频| 青青青在线观看视频| 91网站在线观看免费| 精品国产一区二区三区无码| 大胆欧美熟妇xx| xxxx18hd亚洲hd捆绑| 日韩欧美国产免费| 国产精品wwwww| 男操女免费网站| 亚洲怡红院在线| 中文字幕av久久| 日本一区午夜艳熟免费| 国产精品无码av在线播放| 日本日本19xxxⅹhd乱影响| 日本三级免费网站| 国产一级不卡毛片| 五月花丁香婷婷| 国产一级片91| 9久久9毛片又大又硬又粗| 国产l精品国产亚洲区久久| 亚洲视频在线观看一区二区三区| 中文字幕在线综合| 天天操夜夜操很很操| 大西瓜av在线| 免费日韩中文字幕| 中文字幕 日韩 欧美| 国产日韩第一页| 欧美 国产 日本| 精品久久久99| 黄色一级大片免费| 免费在线观看亚洲视频| 蜜桃免费在线视频| 黄色a级在线观看| 欧美激情视频免费看| 激情五月婷婷久久| 三年中文高清在线观看第6集| 久操手机在线视频| 不要播放器的av网站| 国产美女视频免费| 欧美二区在线视频| 99re精彩视频| 97视频在线免费| 中文字幕 91| 国产在线视频综合| 精品久久久久久久无码| 伊人免费视频二| 欧美不卡在线播放| 一道本在线免费视频| 国产一线二线三线女| 亚洲免费看av| 被灌满精子的波多野结衣| 少妇久久久久久被弄到高潮| 欧美 日韩精品| 男女爱爱视频网站| 国产成人精品无码播放| 青青视频免费在线| 日韩av片网站| 熟妇人妻无乱码中文字幕真矢织江| 一区二区三区四区久久| 六月丁香婷婷在线| 欧美 国产 精品| 黄色在线视频网| 国产欧美日韩网站| 色呦呦网站入口| 91国产精品视频在线观看| 精品国产一区二区三区无码| 手机版av在线| 久久久久久久少妇| 毛片在线视频播放| 四虎免费在线观看视频| 国产精品亚洲a| 国产成a人亚洲精v品在线观看| 久久撸在线视频| 精品99在线视频| 女人帮男人橹视频播放| 久久久国产精华液999999| 国产精品亚洲αv天堂无码|