久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代做COCMP5328、代寫Python設(shè)計(jì)程序

時(shí)間:2024-05-07  來源:  作者: 我要糾錯(cuò)



COCMP5328 - Advanced Machine Learning 
Assignment 1 
This assignment is to be completed in groups of 2 to 3 students. It is worth 25% of your 
total mark. 
1 Objective 
The objective of this assignment is to implement Non-negative Matrix Factorization 
(NMF) algorithms and analyze the robustness of NMF algorithms when the dataset is 
contaminated by large magnitude noise or corruption. More specifically, you should 
implement at least two NMF algorithms and compare their robustness. 
2 Instructions 
2.1 Dataset description 
In this assignment, you need to apply NMF algorithms on two real-world face image 
datasets: (1) ORL dataset
1; (2) Extended YaleB dataset
2

• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images per 
subject). For some subjects, the images were taken at different times, varying the 
lighting, facial expressions, and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an 
upright, frontal position. All images are cropped and resized to 92×112 pixels. 
• Extended YaleB dataset: it contains 2414 images of 38 subjects under 9 poses 
and 64 illumination conditions. All images are manually aligned, cropped, and 
then resized to 168×192 pixels. 
 
     1    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html    
2    http://vision.ucsd.edu/    iskwak/ExtYaleDatabase/ExtYaleB.html    2    
Figure 1: An example face image and its occluded versions by b × b-blocks with b = 
10,12, and 14 pixels. 
Note: we provide a tutorial for this assignment, which contains example code for 
loading a dataset to numpy array. Please find more details in assignment1.ipynb. 
2.2 Assignment tasks 
1. You need to implement at least two Non-negative Matrix Factorization (NMF) 
algorithms: 
• You should implement at least two NMF algorithms with at least one not 
taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost Based 
NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based NMF). 
• For each algorithm, you need to describe the definition of cost function as 
well as the optimization methods used in your implementation. 
2. You need to analyze the robustness of each algorithm on two datasets: 
• You are allowed to design your own data pre-processing method (if 
necessary). 
• You need to use a block-occlusion noise similar to those shown in Figure 1. 
The noise is generated by setting the pixel values to be 255 in the block. You 
should design your own value for b (not necessary to be 10,12 or 14). You 
are also encouraged to design your own noise other than the block-occlusion 
noise. 
• You need to demonstrate each type of noise used in your experiment (show 
the original image as well as the image contaminated by noise). 
• You should carefully choose the NMF algorithms and design experiment 
settings to clearly show the different robustness of the algorithms you have 
implemented. 
3. You are only allowed to use the python standard library, numpy and scipy (if 
necessary) to implement NMF algorithms. 3    
2.3 Programming and External Libraries Python
This assignment is required to be finished by 3. When you implement NMF 
algorithms, you are not allowed to use external libraries which contains NMF 
implementations, such as scikit-learn, and Nimfa (i.e., you have to implement the NMF 
algorithms by yourself). You are allowed to use scikit-learn for evaluation only (please 
find more details in assignment1.ipynb). If you have any ambiguity whether you can 
use a particular library or a function, please post on canvas under the Assignment 1 
thread. 
2.4 Evaluate metrics 
To compare the performance and robustness of different NMF algorithms, we provide 
three evaluation metrics: (1) Root Means Square Errors; (2) Average Accuracy; (3) 
Normalized Mutual Information. For all experiments, you need to use at least two 
metrics, i.e., Root Means Square Errors and Average Accuracy. 
• Root Means Square Errors (RMSE): let X denote the contaminated dataset (by 
adding noise), and      ̂ denote the clean dataset. Let   and   denote the 
factorization results on      ̂ , the Root Means Square Errors then can be defined 
as follows: 
(1) 
• Average Accuracy: You need to perform some clustering algorithms (i.e., Kmeans)
with num clusters equal to num classes. Each example is assigned with 
the cluster label (please find more details in assignment1.ipynb). Lastly, you can 
evaluate the accuracy of predictions Ypred as follows: 
 (3) 
where I(·,·) is mutual information and H(·) is entropy. 
Note: we expect you to have a rigorous performance evaluation. To provide an estimate 
of the performance of the algorithms in the report, you can repeat multiple times (e.g., 
5 times) for each experiment by randomly sampling 90% data from the whole dataset 
and average the metrics on different subset. You are also required to report the standard 
deviations. 4    
3 Report 
The report should be organized like research papers, and should contain the following 
sections: 
• In abstract, you should briefly introduce the topic of this assignment and describe 
the organization of your report. 
• In introduction, you should first introduce the main idea of NMF as well as its 
applications. You should then give an overview of the methods you want to use. 
• In related work, you are expected to review the main idea of related NMF 
algorithms (including their advantages and disadvantages). 
• In methods, you should describe the details of your method (including the 
definition of cost functions as well as optimization steps). You should also 
describe your choices of noise and you are encouraged to explain the robustness 
of each algorithm from theoretical view. 
• In experiment, firstly, you should introduce the experimental setup (e.g., datasets, 
algorithms, and noise used in your experiment for comparison). 
Second, you should show the experimental results and give some comments. 
• In conclusion, you should summarize your results and discuss your insights for 
future work. 
• In reference, you should list all references cited in your report and formatted all 
references in a consistent way. 
The layout of the report: 
• Font: Times New Roman; Title: font size 14; Body: font size 12 
• Length: Ideally 10 to 15 pages - maximum 20 pages 
Note: You are encouraged to use LaTeX. Optionally, a MS-Word template is provided. 
4 Submissions 
The submission contains two parts: source code and report. Detailed instructions are 
as follows: 
1. Go to Canvas and upload the following files. 5    
1. report (a pdf file): the report should include each member’s details 
(student id and name). 
2. code (a folder) as zip file 
i. algorithm (a sub-folder): your code could be multiple files inside 
algorithm sub-folder. 
ii. data (an empty sub-folder): although two datasets should be inside the 
data folder, please do not include them in the zip file. We will copy two 
datasets to the data folder when we test the code. 
2. Only one student needs to submit the report as pdf file and code as zip file which 
must be named as student ID numbers of all group members separated by 
underscores. 
E.g., “xxxxx_xxxxx_xxxxx_code.zip and xxxxx_xxxxx_xxxxx_report.pdf”. 
3. Your submission should include the report and the code. A plagiarism checker 
will be used. 
4. You need to clearly provide instructions on how to run your code in the appendix 
of the report. 
5. Indicate the contribution of each group member. 
6. A penalty of minus 1.25 (5%) marks per each day after due (email late 
submissions to TA and confirm late submission dates with TA). Maximum delay 
is 5 days, Assignments more than 5 days late will get 0. 
 
5 Plagiarism 
• Please read the University Policy on Academic Honesty carefully: 
http://sydney.edu.au/elearning/student/EI/academic_honesty.shtml 
• All cases of academic dishonesty and plagiarism will be investigated. 
• There is a new process and a centralised University system and database. 
• Three types of offences: 
1. Plagiarism – When you copy from another student, website or other 
source. This includes copying the whole assignment or only a part of it. 
2. Academic Dishonesty – When you make your work available to another 
student to copy (the whole assignment or a part of it). There are other 
examples of academic dishonesty. 6    
3. Misconduct - When you engage another person to complete your 
assignment (or a part of it), for payment or not. This is a very serious 
matter, and the Policy requires that your case is forwarded to the 
University Registrar for investigation. 
• The penalties are severe and include: 
1. A permanent record of academic dishonesty, plagiarism, and misconduct 
in the University database and on your student file. 
2. Mark deduction, ranging from 0 for the assignment to Fail for the course. 
3. Expulsion from the University and cancelling of your student visa. 
• When there is copying between students, note that both students are penalised – 
the student who copies and the student who makes his/her work available for 
copying. 
• It is noted that only 30% (including references) is acceptable. The high 
plagiarism will be reported to the school. 
 
 7    
6 Marking scheme 
Category Criterion Marks Comments 
Report [20] Abstract [0.75] 
•Problem, methods, organization. 
Introduction [1.25] 
•What is the problem you intend to solve? 
•Why is this problem important? 
Previous work [1.5] 
•Previous relevant methods used in literature? 
Methods [6.25] 
•Pre-processing (if any) •NMF 
Algorithm’s formulation. 
•Noise choice and description. 
Experiments and Discussions [6.25] 
•Experiments, comparisons, and evaluation 
•Extensive analysis and discussion of results 
•Relevant personal reflection 
Conclusions and Future work [0.75] 
•Meaningful conclusions based on results 
•Meaningful future work suggested 
Presentation [1.25] 
•Grammatical sentences, no spelling mistakes 
•Good structure and layout, consistent 
formatting 
•Appropriate citation and referencing 
•Use graphs and tables to summarize data 
Other [2] 
•At the discretion of the marker: for impressing 
the marker, excelling expectation, etc. 
Examples include clear presentation, welldesigned
experiment, fast code, etc. 
 8    
Code [5] 
•Code runs within a feasible time 
•Well organized, commented and documented 
 
Penalties [−] 
•Badly written code: [−5] 
•Not including instructions on how to run your 
code: [−5] 
 
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero). 

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp























 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP4403、代做Java編程語言
  • 下一篇:COMP1212代寫、代做Java/c++程序設(shè)計(jì)
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺(tái) 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    中文字幕日韩精品无码内射| 国产精彩免费视频| 中国黄色片免费看| 久久久免费视频网站| 亚洲中文字幕无码专区| 亚洲美免无码中文字幕在线| 浮妇高潮喷白浆视频| 国产aⅴ爽av久久久久| 色偷偷中文字幕| 国产xxxx振车| 777精品久无码人妻蜜桃| 视频区 图片区 小说区| 国产v亚洲v天堂无码久久久| 欧美在线观看视频免费| 91小视频在线播放| 欧美伦理视频在线观看| 青青草原国产在线视频| 黄色www在线观看| 特级西西人体www高清大胆| 99re在线视频免费观看| 99色精品视频| 欧美国产日韩激情| 簧片在线免费看| 九九久久九九久久| 精品中文字幕av| 日本久久久网站| 中文字幕制服丝袜在线| 欧美女同在线观看| 乱子伦视频在线看| 国产人妻777人伦精品hd| 色婷婷综合久久久久中文字幕 | 艳母动漫在线免费观看| 999一区二区三区| 亚洲第一综合网站| 91香蕉视频在线观看视频| 中文字幕第80页| 黄色免费观看视频网站| 日韩精品视频在线观看视频| 99亚洲国产精品| 欧洲xxxxx| 成年人免费观看的视频| 波多野结衣在线免费观看| 天天影视色综合| 天天综合天天添夜夜添狠狠添| 在线看的黄色网址| 一级黄色特级片| 黄色永久免费网站| 午夜剧场在线免费观看| 中文字幕国产免费| 中文字幕精品一区二区三区在线| 久热精品在线观看视频| 91高清国产视频| 手机av在线网| 一二三av在线| 精品人妻一区二区三区四区在线| 我的公把我弄高潮了视频| 福利视频一二区| 国产网站免费在线观看| 干日本少妇首页| 噼里啪啦国语在线观看免费版高清版| 无码人妻丰满熟妇区五十路百度| 成年人在线看片| 午夜久久久精品| 中文字幕亚洲影院| 熟女视频一区二区三区| 成人毛片100部免费看| 91.com在线| 国产偷人视频免费| 国产区二区三区| 午夜影院免费观看视频| 日本久久久网站| 白嫩少妇丰满一区二区| 五月激情婷婷在线| 亚洲精品天堂成人片av在线播放| av在线播放天堂| 少妇人妻互换不带套| 亚洲第一天堂久久| 成人小视频在线观看免费| 欧美日韩黄色一级片| 在线观看国产中文字幕| 国产免费一区二区三区四在线播放| 福利在线一区二区| 成人三级视频在线播放| 午夜xxxxx| 日韩人妻无码精品久久久不卡| 久久久久狠狠高潮亚洲精品| 国内自拍第二页| 国产免费黄色一级片| 99热手机在线| 日韩专区第三页| 亚洲国产精品毛片av不卡在线| 久久精品一卡二卡| 久青草视频在线播放| 天天干在线影院| 日韩精品一区二区在线视频 | 天天综合天天添夜夜添狠狠添| 在线观看成人免费| www.国产在线播放| 欧美精品色婷婷五月综合| 一级黄色在线播放| 妞干网在线视频观看| 粉色视频免费看| 日本午夜激情视频| 日韩肉感妇bbwbbwbbw| 国产美女作爱全过程免费视频| 欧美在线观看视频网站| 欧美日韩午夜爽爽| 在线观看av网页| 国产 日韩 亚洲 欧美| 尤物网站在线看| 色婷婷综合久久久久中文字幕 | 国产一区二区三区精彩视频 | 爱福利视频一区二区| 色婷婷综合在线观看| 欧美 国产 小说 另类| 日韩精品一区二区三区电影| 亚洲视频在线a| 久久精品国产sm调教网站演员| 波多野结衣xxxx| 亚洲自偷自拍熟女另类| 日韩视频一二三| 亚洲视频一二三四| 成人三级视频在线播放| 人人妻人人澡人人爽欧美一区双| 国产原创精品在线| 久久精品99国产| 极品粉嫩国产18尤物| 第九区2中文字幕| 老司机午夜免费福利视频| 日韩中文字幕二区| 全黄性性激高免费视频| 天天成人综合网| 在线观看av网页| 久久人妻精品白浆国产| 可以在线看的av网站| 国内自拍中文字幕| 日韩人妻精品一区二区三区| 九九热免费在线观看| 中文久久久久久| 国产激情在线观看视频| 久艹在线免费观看| 国产传媒久久久| 91看片淫黄大片91| 国产精品igao网网址不卡| 日韩在线不卡一区| 天天干天天草天天| 污视频免费在线观看网站| 日本成人在线免费视频| 欧在线一二三四区| 日本精品久久久久中文字幕| 久久久噜噜噜www成人网| 国产一区二区视频播放| 成人在线观看你懂的| 亚洲中文字幕无码av永久| 国产欧美日韩网站| 日韩国产一级片| 欧美国产激情视频| 妺妺窝人体色www在线小说| 伊人成色综合网| 看av免费毛片手机播放| 日韩精品久久一区二区| 日本a在线天堂| 国产一二三区在线播放| 青青青青草视频| 亚洲国产精品久久久久爰色欲| 男女高潮又爽又黄又无遮挡| 国语对白做受xxxxx在线中国| 情侣黄网站免费看| 三级a在线观看| 91小视频在线播放| 欧洲精品视频在线| 亚洲国产精品无码观看久久| 国产一区二区视频播放| 午夜肉伦伦影院| 最新天堂中文在线| 亚洲AV无码成人精品一区| 99er在线视频| 男人操女人免费软件| 国产精品视频分类| 日日夜夜精品视频免费观看| 亚洲精品中文字幕乱码无线| 青青在线免费视频| 午夜免费福利小电影| www黄色在线| 中文字幕黄色大片| 亚洲精品久久久久久久蜜桃臀| 麻豆tv在线播放| 男女男精品视频站| 手机在线视频你懂的| 妞干网在线视频观看| 天天爽天天爽夜夜爽| 在线无限看免费粉色视频| 国产欧美日韩网站| 日日噜噜夜夜狠狠| 五月天激情图片| 午夜视频在线瓜伦| 日韩国产精品毛片| 人妻少妇被粗大爽9797pw| 亚洲黄色av片| 日韩在线一级片|