久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代做COCMP5328、代寫Python設計程序

時間:2024-05-07  來源:  作者: 我要糾錯



COCMP5328 - Advanced Machine Learning 
Assignment 1 
This assignment is to be completed in groups of 2 to 3 students. It is worth 25% of your 
total mark. 
1 Objective 
The objective of this assignment is to implement Non-negative Matrix Factorization 
(NMF) algorithms and analyze the robustness of NMF algorithms when the dataset is 
contaminated by large magnitude noise or corruption. More specifically, you should 
implement at least two NMF algorithms and compare their robustness. 
2 Instructions 
2.1 Dataset description 
In this assignment, you need to apply NMF algorithms on two real-world face image 
datasets: (1) ORL dataset
1; (2) Extended YaleB dataset
2

• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images per 
subject). For some subjects, the images were taken at different times, varying the 
lighting, facial expressions, and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an 
upright, frontal position. All images are cropped and resized to 92×112 pixels. 
• Extended YaleB dataset: it contains 2414 images of 38 subjects under 9 poses 
and 64 illumination conditions. All images are manually aligned, cropped, and 
then resized to 168×192 pixels. 
 
     1    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html    
2    http://vision.ucsd.edu/    iskwak/ExtYaleDatabase/ExtYaleB.html    2    
Figure 1: An example face image and its occluded versions by b × b-blocks with b = 
10,12, and 14 pixels. 
Note: we provide a tutorial for this assignment, which contains example code for 
loading a dataset to numpy array. Please find more details in assignment1.ipynb. 
2.2 Assignment tasks 
1. You need to implement at least two Non-negative Matrix Factorization (NMF) 
algorithms: 
• You should implement at least two NMF algorithms with at least one not 
taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost Based 
NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based NMF). 
• For each algorithm, you need to describe the definition of cost function as 
well as the optimization methods used in your implementation. 
2. You need to analyze the robustness of each algorithm on two datasets: 
• You are allowed to design your own data pre-processing method (if 
necessary). 
• You need to use a block-occlusion noise similar to those shown in Figure 1. 
The noise is generated by setting the pixel values to be 255 in the block. You 
should design your own value for b (not necessary to be 10,12 or 14). You 
are also encouraged to design your own noise other than the block-occlusion 
noise. 
• You need to demonstrate each type of noise used in your experiment (show 
the original image as well as the image contaminated by noise). 
• You should carefully choose the NMF algorithms and design experiment 
settings to clearly show the different robustness of the algorithms you have 
implemented. 
3. You are only allowed to use the python standard library, numpy and scipy (if 
necessary) to implement NMF algorithms. 3    
2.3 Programming and External Libraries Python
This assignment is required to be finished by 3. When you implement NMF 
algorithms, you are not allowed to use external libraries which contains NMF 
implementations, such as scikit-learn, and Nimfa (i.e., you have to implement the NMF 
algorithms by yourself). You are allowed to use scikit-learn for evaluation only (please 
find more details in assignment1.ipynb). If you have any ambiguity whether you can 
use a particular library or a function, please post on canvas under the Assignment 1 
thread. 
2.4 Evaluate metrics 
To compare the performance and robustness of different NMF algorithms, we provide 
three evaluation metrics: (1) Root Means Square Errors; (2) Average Accuracy; (3) 
Normalized Mutual Information. For all experiments, you need to use at least two 
metrics, i.e., Root Means Square Errors and Average Accuracy. 
• Root Means Square Errors (RMSE): let X denote the contaminated dataset (by 
adding noise), and      ̂ denote the clean dataset. Let   and   denote the 
factorization results on      ̂ , the Root Means Square Errors then can be defined 
as follows: 
(1) 
• Average Accuracy: You need to perform some clustering algorithms (i.e., Kmeans)
with num clusters equal to num classes. Each example is assigned with 
the cluster label (please find more details in assignment1.ipynb). Lastly, you can 
evaluate the accuracy of predictions Ypred as follows: 
 (3) 
where I(·,·) is mutual information and H(·) is entropy. 
Note: we expect you to have a rigorous performance evaluation. To provide an estimate 
of the performance of the algorithms in the report, you can repeat multiple times (e.g., 
5 times) for each experiment by randomly sampling 90% data from the whole dataset 
and average the metrics on different subset. You are also required to report the standard 
deviations. 4    
3 Report 
The report should be organized like research papers, and should contain the following 
sections: 
• In abstract, you should briefly introduce the topic of this assignment and describe 
the organization of your report. 
• In introduction, you should first introduce the main idea of NMF as well as its 
applications. You should then give an overview of the methods you want to use. 
• In related work, you are expected to review the main idea of related NMF 
algorithms (including their advantages and disadvantages). 
• In methods, you should describe the details of your method (including the 
definition of cost functions as well as optimization steps). You should also 
describe your choices of noise and you are encouraged to explain the robustness 
of each algorithm from theoretical view. 
• In experiment, firstly, you should introduce the experimental setup (e.g., datasets, 
algorithms, and noise used in your experiment for comparison). 
Second, you should show the experimental results and give some comments. 
• In conclusion, you should summarize your results and discuss your insights for 
future work. 
• In reference, you should list all references cited in your report and formatted all 
references in a consistent way. 
The layout of the report: 
• Font: Times New Roman; Title: font size 14; Body: font size 12 
• Length: Ideally 10 to 15 pages - maximum 20 pages 
Note: You are encouraged to use LaTeX. Optionally, a MS-Word template is provided. 
4 Submissions 
The submission contains two parts: source code and report. Detailed instructions are 
as follows: 
1. Go to Canvas and upload the following files. 5    
1. report (a pdf file): the report should include each member’s details 
(student id and name). 
2. code (a folder) as zip file 
i. algorithm (a sub-folder): your code could be multiple files inside 
algorithm sub-folder. 
ii. data (an empty sub-folder): although two datasets should be inside the 
data folder, please do not include them in the zip file. We will copy two 
datasets to the data folder when we test the code. 
2. Only one student needs to submit the report as pdf file and code as zip file which 
must be named as student ID numbers of all group members separated by 
underscores. 
E.g., “xxxxx_xxxxx_xxxxx_code.zip and xxxxx_xxxxx_xxxxx_report.pdf”. 
3. Your submission should include the report and the code. A plagiarism checker 
will be used. 
4. You need to clearly provide instructions on how to run your code in the appendix 
of the report. 
5. Indicate the contribution of each group member. 
6. A penalty of minus 1.25 (5%) marks per each day after due (email late 
submissions to TA and confirm late submission dates with TA). Maximum delay 
is 5 days, Assignments more than 5 days late will get 0. 
 
5 Plagiarism 
• Please read the University Policy on Academic Honesty carefully: 
http://sydney.edu.au/elearning/student/EI/academic_honesty.shtml 
• All cases of academic dishonesty and plagiarism will be investigated. 
• There is a new process and a centralised University system and database. 
• Three types of offences: 
1. Plagiarism – When you copy from another student, website or other 
source. This includes copying the whole assignment or only a part of it. 
2. Academic Dishonesty – When you make your work available to another 
student to copy (the whole assignment or a part of it). There are other 
examples of academic dishonesty. 6    
3. Misconduct - When you engage another person to complete your 
assignment (or a part of it), for payment or not. This is a very serious 
matter, and the Policy requires that your case is forwarded to the 
University Registrar for investigation. 
• The penalties are severe and include: 
1. A permanent record of academic dishonesty, plagiarism, and misconduct 
in the University database and on your student file. 
2. Mark deduction, ranging from 0 for the assignment to Fail for the course. 
3. Expulsion from the University and cancelling of your student visa. 
• When there is copying between students, note that both students are penalised – 
the student who copies and the student who makes his/her work available for 
copying. 
• It is noted that only 30% (including references) is acceptable. The high 
plagiarism will be reported to the school. 
 
 7    
6 Marking scheme 
Category Criterion Marks Comments 
Report [20] Abstract [0.75] 
•Problem, methods, organization. 
Introduction [1.25] 
•What is the problem you intend to solve? 
•Why is this problem important? 
Previous work [1.5] 
•Previous relevant methods used in literature? 
Methods [6.25] 
•Pre-processing (if any) •NMF 
Algorithm’s formulation. 
•Noise choice and description. 
Experiments and Discussions [6.25] 
•Experiments, comparisons, and evaluation 
•Extensive analysis and discussion of results 
•Relevant personal reflection 
Conclusions and Future work [0.75] 
•Meaningful conclusions based on results 
•Meaningful future work suggested 
Presentation [1.25] 
•Grammatical sentences, no spelling mistakes 
•Good structure and layout, consistent 
formatting 
•Appropriate citation and referencing 
•Use graphs and tables to summarize data 
Other [2] 
•At the discretion of the marker: for impressing 
the marker, excelling expectation, etc. 
Examples include clear presentation, welldesigned
experiment, fast code, etc. 
 8    
Code [5] 
•Code runs within a feasible time 
•Well organized, commented and documented 
 
Penalties [−] 
•Badly written code: [−5] 
•Not including instructions on how to run your 
code: [−5] 
 
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp























 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP4403、代做Java編程語言
  • 下一篇:COMP1212代寫、代做Java/c++程序設計
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    红桃视频 国产| 奇米影音第四色| 天天干天天干天天干天天干天天干| 亚洲小视频在线播放| 日本三级黄色网址| 中文字幕欧美人妻精品一区| 欧美性潮喷xxxxx免费视频看| 亚洲色图偷拍视频| 亚洲乱码国产一区三区| 免费av网址在线| 国产午夜伦鲁鲁| 男人添女人下面高潮视频| 亚洲色成人www永久在线观看| www.黄色网址.com| 久久精品国产精品亚洲精品色| 午夜剧场在线免费观看| 欧美特级aaa| 成人亚洲精品777777大片| 好男人www社区| 999精品视频在线| www.天天射.com| 午夜国产一区二区三区| 亚洲综合色在线观看| 另类小说第一页| 欧美三级午夜理伦三级富婆| 美女少妇一区二区| 做a视频在线观看| 一区二区三区日韩视频| 日本福利视频导航| 成人小视频在线观看免费| 久艹在线免费观看| 黄色av网址在线播放| 欧美 激情 在线| 亚洲一区二区三区四区五区xx| 91插插插插插插插插| 看看黄色一级片| 亚洲五码在线观看视频| av网站大全免费| 国产综合免费视频| 亚洲另类第一页| 日韩中文在线字幕| 精品久久久久久久久久中文字幕| 国产精品国产对白熟妇| avove在线观看| 中文字幕在线乱| 成人午夜视频免费观看| 91丨porny丨探花| 国产a视频免费观看| 视频二区在线播放| 青青草影院在线观看| 人体内射精一区二区三区| 日本一本二本在线观看| 色综合色综合色综合色综合| 在线一区二区不卡| av在线播放天堂| 国产a级片免费观看| 91在线第一页| 日韩国产一级片| 亚洲天堂av线| 国产又爽又黄ai换脸| 日日摸日日碰夜夜爽无码| 日本美女高潮视频| 亚洲五码在线观看视频| 日韩毛片在线免费看| 中文字幕在线视频一区二区| 国产综合中文字幕| 九九精品久久久| 日韩欧美不卡在线| 亚洲精品视频三区| 91国视频在线| 久久精品一二三四| aaa毛片在线观看| 日韩精品第1页| 黄色一级二级三级| 福利视频免费在线观看| 国内国产精品天干天干| a级黄色小视频| 久久久久久久久久久久91| 99er在线视频| 国模私拍视频在线观看| 毛片在线播放视频| www亚洲国产| 一区二区三区网址| 欧美亚洲日本一区二区三区 | 免费看黄色a级片| 茄子视频成人免费观看| 欧美日韩激情四射| 波多结衣在线观看| 欧美日韩精品在线一区二区 | 亚洲少妇第一页| 久久精品无码中文字幕| 一二三级黄色片| 亚洲中文字幕久久精品无码喷水| 久久在线中文字幕| 免费久久久久久| 国模私拍视频在线观看| 日韩av片在线看| 国产免费内射又粗又爽密桃视频| 污污的网站免费| 日本老熟妇毛茸茸| 亚洲中文字幕无码中文字| 99久久久精品视频| 手机福利在线视频| xxxx在线免费观看| 国产精品一区二区羞羞答答| 欧美a在线视频| www.日本在线播放| avav在线播放| 欧美另类videosbestsex日本| 手机av在线网站| 亚洲最大成人在线观看| 青青青国产在线视频| 国产主播在线看| av动漫在线看| 97成人在线免费视频| 人妻无码久久一区二区三区免费| 99视频精品全部免费看| 日本一级淫片演员| 久久久一二三四| 波多野结衣三级在线| 中文 日韩 欧美| 久久6免费视频| 亚洲黄色片免费| 青青草原播放器| 亚洲美女自拍偷拍| 免费国产成人av| 久久九九国产视频| 日本新janpanese乱熟| 91蝌蚪视频在线观看| 一级黄色香蕉视频| 福利在线一区二区三区| 牛夜精品久久久久久久| 色播五月综合网| 天堂av手机在线| 四虎免费在线观看视频| 九九久久九九久久| 免费看毛片的网址| 日本精品一区在线观看| 波多野结衣作品集| 在线观看av网页| 毛毛毛毛毛毛毛片123| 久久久久福利视频| 欧美成人一区二区在线观看| 免费日韩视频在线观看| 亚洲综合欧美在线| 操bbb操bbb| 男人用嘴添女人下身免费视频| 少妇性饥渴无码a区免费| 激情五月亚洲色图| 不卡中文字幕在线观看| 91九色国产ts另类人妖| 欧美日韩福利在线| 人妻内射一区二区在线视频| 中文字幕av不卡在线| 免费观看黄色大片| 日本欧美黄色片| 最新中文字幕免费视频| 日韩不卡的av| 人妻少妇精品无码专区二区| 成年人小视频网站| 中文字幕第22页| 每日在线观看av| 国产一区二区在线免费播放| 97超碰人人爱| 国产成人a亚洲精v品无码| 欧美又黄又嫩大片a级| 国产黄色片免费在线观看| 成人中文字幕av| 日韩不卡一二区| 欧美黄网站在线观看| 亚洲免费av网| av天堂永久资源网| 亚洲综合伊人久久| 一区二区传媒有限公司| 亚洲三级在线观看视频| 免费不卡av在线| 网站在线你懂的| 熟女少妇在线视频播放| 999久久久精品视频| 中国丰满人妻videoshd| 不卡中文字幕在线| 成人黄色一区二区| 国产精品视频一二三四区| 人妻无码视频一区二区三区| 国内外成人激情免费视频| 亚洲五月天综合| www精品久久| 久久精品亚洲天堂| 超碰97人人射妻| 99er在线视频| 一级做a免费视频| 岳毛多又紧做起爽| av久久久久久| 色91精品久久久久久久久| 两根大肉大捧一进一出好爽视频| 色乱码一区二区三区熟女| 中文字幕国产传媒| 日韩少妇内射免费播放18禁裸乳| 欧美少妇一区二区三区| 8x8x成人免费视频|