久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

代做MATH1033、代寫c/c++,Java程序語言

時間:2024-05-11  來源:  作者: 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER 2023-2024
MATH1033 - STATISTICS
Your neat, clearly-legible solutions should be submitted electronically via the MATH1033 Moodle page by
18:00 on Wednesday 8th May 2024. Since this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct). Submissions made more than one week
after the deadline date will receive a mark of zero. Please try to make your submission by the deadline.
General points about the coursework
1. Please use R Markdown to produce your report.
2. An R Markdown template file to get you started is available to download from Moodle. Do make use of
this, besides reading carefully the Hints and Tips section below.
3. Please submit your report a self-contained html file (i.e. as produced by R Markdown) or pdf.
4. If you have any queries about the coursework, please ask me by email (of course, please limit this to
requests for clarification; don’t ask for any of the solution nor post any of your own).
Your task
The data file scottishData.csv contains a sample of the ”Indicator” data that were used to compute the 2020
Scottish Index of Multiple Deprivation (SIMD), a tool used by government bodies to support policy-making. If
you are interested, you can see the SIMD and find out more about it here: https://simd.scot
Once you have downloaded the csv file, and once you’ve set the RStudio working directory to wherever you
put the file, you can load the data with dat <- read.csv(”scottishData.csv”) The file contains data for a sample
of 400 ”data zones” within Scotland. Data zones are small geographical areas in Scotland, of which there
are 6,976 in total, with each typically containing a population of between 500 and 1000 people. Of the 400
observations within the data file, 100 are from the Glasgow City, 100 are from City of Edinburgh, and 200
are from elsewhere in Scotland. Glasgow and Edinburgh are the two largest cities in Scotland by population.
Table 1 shows a description of the different variables within the data set.
Your report should have the following section headings: Summary, Introduction, Methods, Results, Conclusions.
For detailed guidance, read carefully section page 4 of the notes, and the ”How will the report be marked?”
section below.
The Results section of your report should include subsections per points 1-3 as follows. The bullet points
indicate what should be included within these subsections, along with suitable brief commentary.
MATH1033 Turn Over
2 MATH1010
1. A comparison of employment rate between Glasgow and Edinburgh.
• A single plot with side-by-side boxplots for the Employment_rate variable for each of
Glasgow and Edinburgh.
• A histogram of the Employment_rate variable with accompanying normal QQ plot, for
each of Glasgow and Edinburgh.
• Sample means and variances of the Employment_rate variable for the data zones in
each of Glasgow and Edinburgh.
• Test of whether there is a difference in variability of Employment_rate scores between
Glasgow and Edinburgh.
• Test of whether there is a difference in means of Employment_rate scores between
Glasgow and Edinburgh.
2. Investigation into how Employment_rate and other variables are associated.
• A matrix of pairwise scatterplots for the following variables: Employment_rate,
Attainment, Attendance, ALCOHOL, and Broadband. Also present pairwise correlation
coefficients between these variables.
• A regression of Employment_rate on Attendance, including a scatterplot showing a line
of best fit.
3. A further investigation into a respect of your choosing.
• It’s up to you what you choose here. Possible things you could consider are: considering
an analysis similar to 1 above, but involving the data on data zones outside of Glasgow
and Edinburgh; considering whether what you find in investigations in 2 above are
similar if you consider whether the data zones are from Glasgow, Edinburgh or elsewhere;
investigating the other variables in the data set besides these in 1 and 2.
• Note that some variables will be very strongly correlated, but with fairly obvious/boring
explanation: for example “rate” variables (see Table 1) are just “count” variables
divided by population size, and data zones are designed to have similar population
sizes.
• Think freely and creatively about what is interesting to investigate, especially how you
could make good use of the methods that you are learning in the module.
Please include as an appendix the R code to produce the results in your report, but don’t include
R code or unformatted text/numerical output in the main part of the report itself.
Hints and tips:
1. Use the template .Rmd file provided on Moodle as your starting point.
2. Read carefully “How will the report be marked?” below. Then re-read it again once again
just before you submit to make sure you have everything in place.
3. You may find the subset command useful. Some examples:
• glasgow <- subset(dat, Council_area == "Glasgow City") defines a new variable containing
data only for Glasgow.
• subset(dat, (Council_area != "City of Edinburgh" & Council_area != "Glasgow City"))
finds the data zones that are not in either Edinburgh or Glasgow.
4. The command names(dat) will tell you the names of the variables (columns) in dat.
5. dat(,c(16,17,18)) will pick out just the 16th, 17th, 18th column (for example).
MATH1010
[ ]
m
( ]
⑧m
3 MATH1010
6. The pairs() function produces a matrix of pairwise scatterplots. cor() computes pairwise
correlation coefficients.
7. Do make sure that figures have clear titles, axis labels, etc
MATH1010 Turn Over
.
4 MATH1010
How will the report be marked?
The marking criteria and approximate mark allocation are as follows:
Summary [4 marks] - have you explained (in non-technical language) (a) the aim of the analysis;
(b) (very briefly) the methods you have used; and (c) the key findings?
Introduction [5] - have you (a) explained the context, talked in a bit more detail about the aim;
(b) given some relevant background information; (c) described the available data; (d) explained
why the study is useful/important?
Methods [3] - have you described the statistical techniques you have used (in at least enough
detail that a fellow statistician can understand what you have done)?
Results [14, of which 7 are for the investigation of your choosing mentioned in point 3 above] -
have you presented suitable graphical/numerical summaries, tests and results, and interspersed
these with text giving explanation?
Conclusions [4] - have you (a) recapped your key findings, (b) discussed any limitations, and
(c) suggested possible further extensions of the work?
Presentation [10] - overall, does the report flow nicely, is the writing clear, and is the presentation
tidy (figures/tables well labelled and captioned)? Has Markdown been used well?
MATH1010
5 MATH1010
Table 1: A description of the different variables. “Standardised ratio” is such that a value of 100
is the Scotland average for a population with the same age and sex profile.
MATH1010 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:COMP2017代寫、代做Python/Java程序
  • 下一篇:CMT219代寫、代做Java程序語言
  • 代做CSCI 2525、c/c++,Java程序語言代寫
  • COMP 315代寫、Java程序語言代做
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久精品无码人妻_青春草无码精品视频在线观_无码精品国产VA在线观看_国产色无码专区在线观看

    日韩不卡视频一区二区| 亚洲国产精品三区| 免费观看日韩毛片| 久久久久xxxx| 国产福利视频在线播放| 97中文字幕在线| а 天堂 在线| 天天干天天干天天干天天干天天干| 欧美狂野激情性xxxx在线观| 日本在线观看视频一区| av网站在线不卡| 黄色动漫在线免费看| 国产一区二区三区小说| 手机在线视频一区| 日本成人在线免费视频| 免费无遮挡无码永久视频| 精品无码av无码免费专区| 久久出品必属精品| 天堂av手机在线| 亚洲午夜精品一区| 99国产精品久久久久久| 亚洲黄色小视频在线观看| 成人3d动漫一区二区三区| 免费在线观看的毛片| 青青青在线播放| 免费日韩视频在线观看| 无码精品国产一区二区三区免费| 成熟了的熟妇毛茸茸| 日本www在线视频| 九一国产精品视频| 日韩精品―中文字幕| 草草久久久无码国产专区| 久色视频在线播放| 黄色片久久久久| 免费看a级黄色片| 不卡av免费在线| 日韩不卡一二三| www.久久久久久久久久久| 午夜av中文字幕| 青青视频免费在线观看| 青青青在线观看视频| 日韩国产一级片| 日本成年人网址| 视频二区在线播放| 91香蕉国产线在线观看| 神马午夜伦理影院| 丰满少妇久久久| 虎白女粉嫩尤物福利视频| 亚洲国产精品三区| 日本三级中文字幕在线观看| 免费人成在线观看视频播放| 北条麻妃在线观看| 日韩av片专区| 久久www视频| 国产无套内射久久久国产| 亚洲精品高清无码视频| 黄色片免费网址| av无码久久久久久不卡网站| 欧美三级午夜理伦三级| 天堂av在线8| 精品丰满人妻无套内射| 国产麻花豆剧传媒精品mv在线| 超碰成人在线播放| 男人添女人荫蒂免费视频| 一级特黄性色生活片| 大桥未久一区二区三区| 国产av天堂无码一区二区三区| 成人中文字幕av| 欧美性受xxxx黑人猛交88| 成年人网站免费视频| 嫩草视频免费在线观看| 国产一区二区四区| 日日躁夜夜躁aaaabbbb| 99热这里只有精品免费| 国产精品亚洲二区在线观看 | 久久久亚洲精品无码| 三级在线免费看| 国产亚洲精品久久久久久久| 一本久道中文无码字幕av| 一区中文字幕在线观看| 国产免费黄视频| 女女同性女同一区二区三区按摩| 久久人妻精品白浆国产| 男人草女人视频| 天天操天天爱天天爽| www.日本在线视频| 中文字幕视频三区| 欧美国产激情视频| 成人手机在线播放| 亚洲欧美日韩三级| 日本不卡在线观看视频| 蜜臀在线免费观看| 自拍偷拍21p| 亚洲中文字幕无码不卡电影| 加勒比海盗1在线观看免费国语版| 日韩中文字幕免费在线| 国产精品成人久久电影| 亚洲天堂av一区二区三区| 播放灌醉水嫩大学生国内精品| 毛片毛片毛片毛片毛| 成人精品小视频| 日韩极品视频在线观看| 亚洲天堂av一区二区| 国产无套粉嫩白浆内谢的出处| 99久久免费观看| 色偷偷中文字幕| 无限资源日本好片| 国产黄色一级网站| 国产精品va在线观看无码| 亚洲欧美一区二区三区不卡| 亚洲成人av免费看| 国产午夜福利视频在线观看| 岛国大片在线播放| 91蝌蚪视频在线| 亚洲18在线看污www麻豆| 亚洲人辣妹窥探嘘嘘| 99re在线视频免费观看| 日韩人妻精品无码一区二区三区| 久久久久久www| 国产黄色片免费在线观看| 免费网站永久免费观看| 久久久国内精品| 欧美人与动牲交xxxxbbbb| 免费的av在线| 中文字幕人妻熟女人妻洋洋| 污污污污污污www网站免费| 国产在线xxxx| 久久人人爽人人爽人人av| 久久www视频| 日韩精品在线视频免费观看| 波多野结衣av一区二区全免费观看| 2021国产视频| 国产91沈先生在线播放| 黄色激情在线视频| 99精品在线免费视频| 日本www在线播放| 免费黄色日本网站| 免费黄色特级片| 天天干天天综合| 亚洲综合伊人久久| 福利网在线观看| 中文字幕日韩精品无码内射| 成人小视频在线观看免费| 日本人妻伦在线中文字幕| 国产免费人做人爱午夜视频| 欧美中文字幕在线观看视频| 精品人妻人人做人人爽| www.avtt| 亚洲熟妇无码另类久久久| 亚洲人精品午夜射精日韩 | 一路向西2在线观看| 日韩手机在线观看视频| 蜜桃免费在线视频| 亚洲天堂网一区| 日本免费色视频| 午夜精品久久久久久久99热影院| 欧美女同在线观看| 日日干日日操日日射| www.桃色.com| 久久精品一二三四| 十八禁视频网站在线观看| 中文字幕在线视频精品| 亚洲在线观看网站| 欧美日韩dvd| 尤物av无码色av无码| 日韩一级理论片| 色婷婷激情视频| 污污污污污污www网站免费| www.亚洲视频.com| 中文字幕在线观看第三页| 国产精品一区二区小说| 午夜视频在线网站| 不卡中文字幕在线| 人妻精品无码一区二区三区| 不卡av免费在线| 成人高清在线观看视频| 欧美黄网在线观看| 艹b视频在线观看| 日本免费在线视频观看| 国产 国语对白 露脸| 欧美一级在线看| 日本高清免费观看| 日b视频免费观看| 成人小视频在线看| 爽爽爽在线观看| 18禁男女爽爽爽午夜网站免费| 久久久精品麻豆| 精品一区二区三区毛片| 成 年 人 黄 色 大 片大 全| 亚洲无在线观看| 欧美午夜性视频| 无限资源日本好片| 色呦色呦色精品| 黄色片视频在线免费观看| 国产视频1区2区3区| 污污污污污污www网站免费| 国产一区二区三区乱码| 中文字幕色网站| 天天夜碰日日摸日日澡性色av| 999精彩视频|